# **ASX** ANNOUNCEMENT

29 April 2024

# TMT Project – Assay Results from Toro Tenement Support Epithermal and Porphyry Style Targets

#### **KEY HIGHLIGHTS**

- Assay results have been received for the rock chip and talus samples collected from Toro North, Central and South targets.
- The highest rock values returned to date indicate 1.41% Cu, 2.49ppm Au, 484ppm Ag, 427ppm Mo, 20.9% Zn and > 20.0% Pb (exceeds the maximum detection limit).
- The Toro North area shows geochemical zoning characteristics of porphyry-style mineralisation, while the Toro South area shows geochemical zoning characteristics of epithermal-type mineralization and underlying porphyry-style mineralisation.
- The Cu, Au, Ag, Mo, Pb, and Zn assay results are supported by anomalous pathfinder elements, including Tl, Li, As, Sb, and Bi, consistent with the metal zoning in the upper levels of at least two potential porphyry systems at the Toro South target and Toro North target.
- These interpretations are supported by the elemental ratios of Au/Ag, Cu/Zn, Mo/Mn and Ag/Au, which provide vectors towards the inferred porphyry centres.

**Belararox Ltd (ASX:BRX) (Belararox or the Company)**, an advanced mineral explorer focused on high-value clean energy metals, is pleased to provide an update on the ongoing field activities at the Company's Toro-Malambo-Tambo ("TMT") Project Argentina.

The TMT Project is located approx. 53km to the south of NGEx Minerals Ltd's (TSX-V:NGEX) ["NGEx"] Lunahuasi Project, as shown in **Figure 1 on page 2**. NGEX announced recently for the Lunahuasi Project a significant drill intercept of 23m @ 23.92% CuEq from a depth of 220m (NGEx Minerals Ltd, 2024). The significant drill intersection was part of a broader drill intercept of 102m @ 4.56% CuEq from a depth of 192m.

**Exploration Director - Argentina, Jason Ward commented:** "These assay results confirm our geological observations that we are in the epithermal environment at Toro Central and South, and deeper, in the high levels of a porphyry system in Toro North. Fieldwork continues at Tambo Sur, after which we will re-rank our projects in order to plan our upcoming drilling program."

**Managing Director, Arvind Misra commented:** "Promising assay results from Toro North, Central, and South targets highlight rich mineralization potential with significant Cu, Au, and Ag values. Geochemical zoning indicates diverse mineralization types, enhancing our project insights. Supported by pathfinder elements, these results signify significant epithermal/porphyry discovery potential."

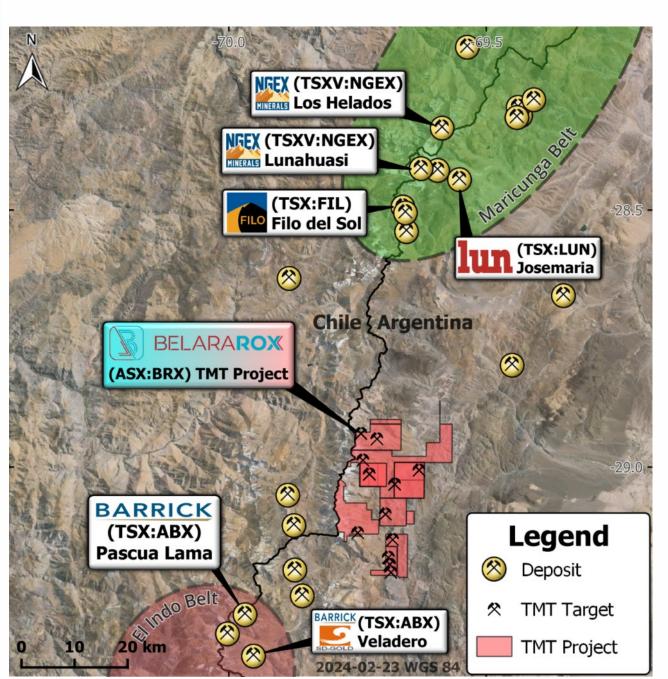
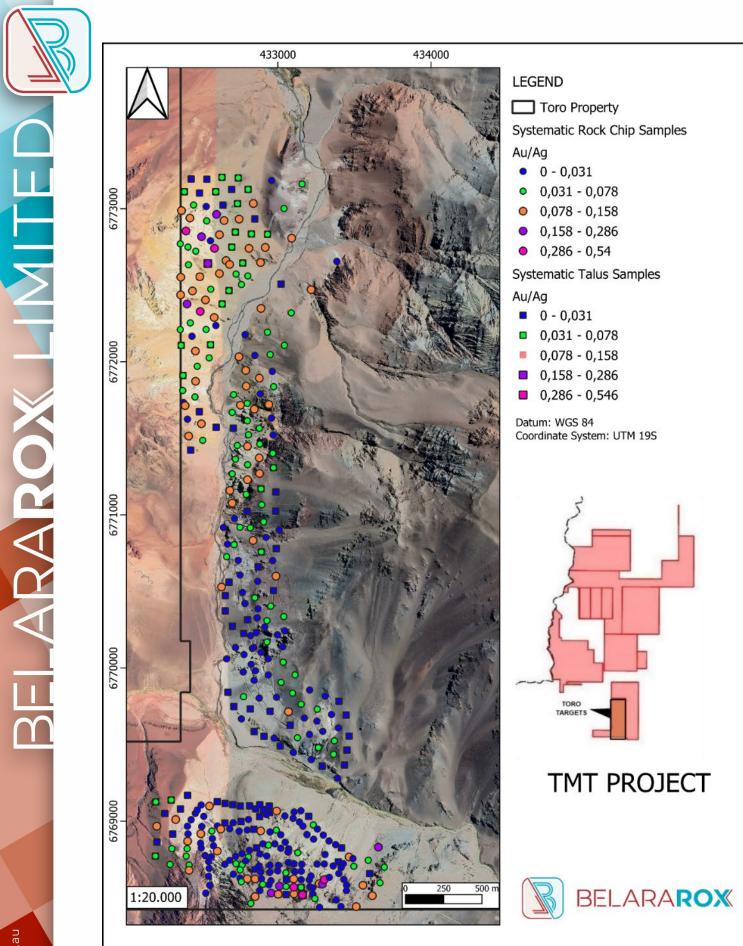


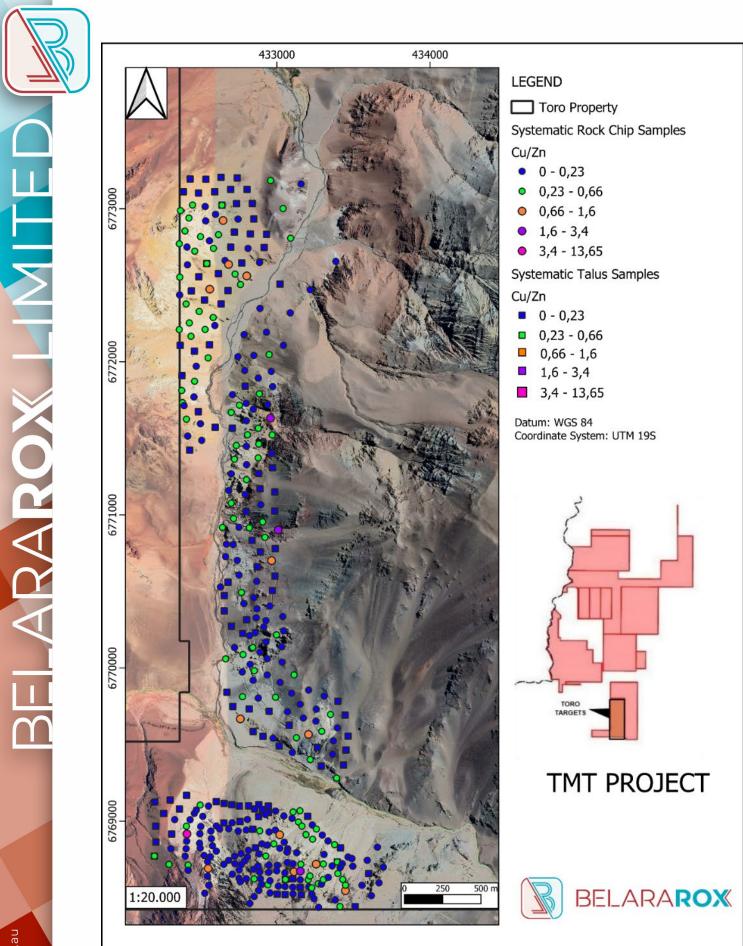

Figure 1: TMT Project and notable Peer projects.

#### TORO NORTH, CENTRAL AND SOUTH INTERPRETATION

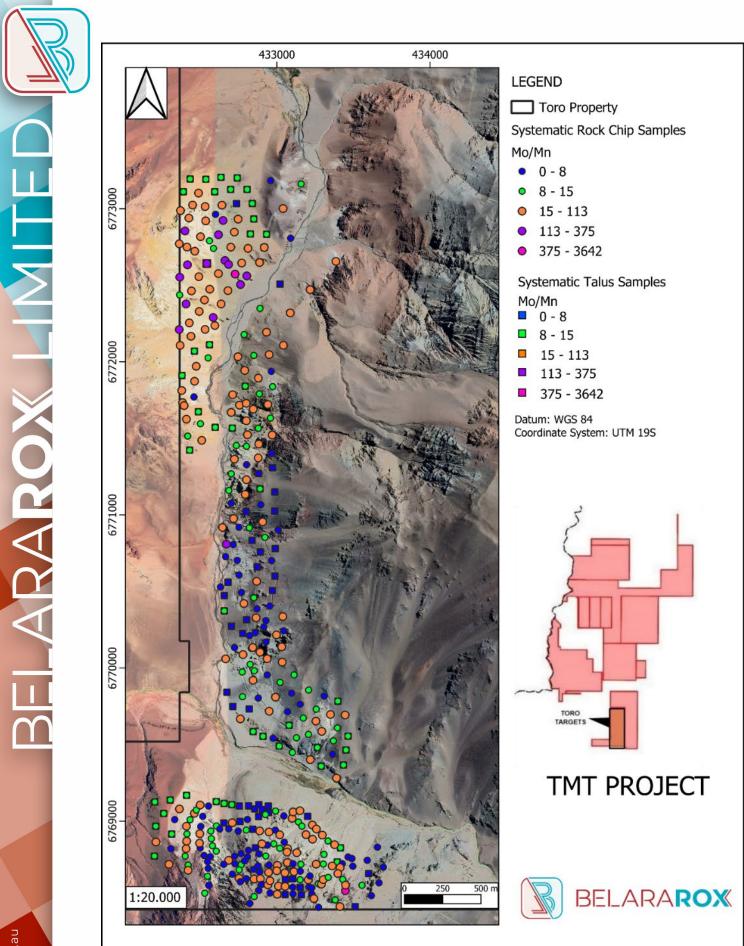
The geochemical results have been received for surface rock samples collected from the Toro North, Central and South. Two (2) types of rock samples were collected and analysed: 1) systematic samples were collected at intervals that range from 50m to 100m in zones of outcrop and road-cuttings; and 2) rock chip samples that were taken from zones of geological interest and visually apparent mineralisation. ALS Laboratory has provided the results of a total of 568 samples collected by the Belararox team, consisting of 91 rock chip samples, 357 systematic rock chip samples and 120 systematic talus samples.


The purpose of geochemical sampling of rock outcrops and talus is to assist in the delineation of metal-zoning in three-dimensions and the targeting of potential centres of Cu-Au mineralization in the Toro area. To refine the surface exposure of porphyry mineralisation and/or epithermal mineral systems, additional surface samples may be required within and/or surrounding the Toro South, Toro Central, and Toro North targets.

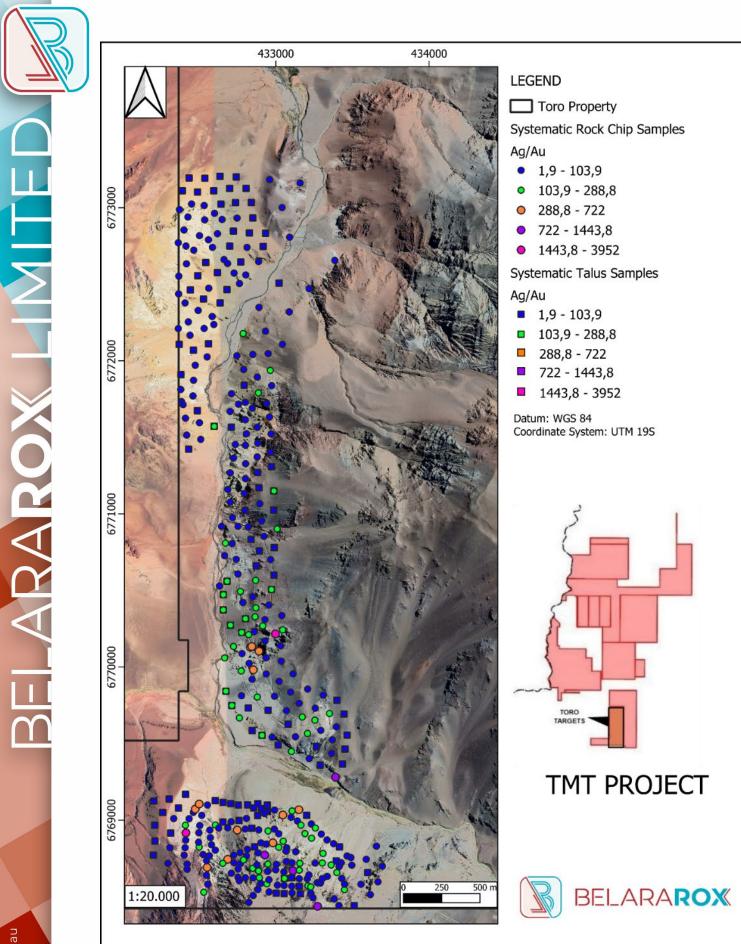
ELARAROX LINIT


The highest rock values from the Toro target returned to date indicate **1.41% Cu, 2.49ppm Au, 484ppm Ag, 427ppm Mo, 20.9% Zn and > 20.0% Pb** (exceeds the maximum detection limit). Elemental ratios from the rock and talus samples are used to assist in determining vectors towards potential porphyry centres, which in many global porphyry systems are characterized by elevated Au/Ag, Cu/Zn and Mo/Mn and low values of Ag/Au (Garwin, 2019). Thematic maps for these elemental ratios are illustrated in Figures 2 through 5.

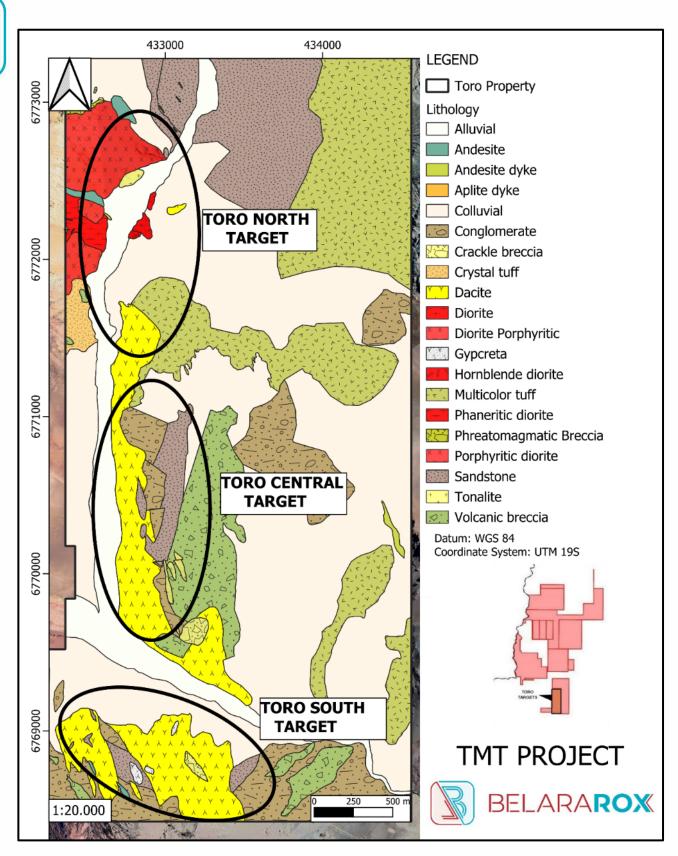
The high Au/Ag, Mo/Mn (rock outcrop) and Cu/Zn (talus) ratios, in addition to the depletion of Mn, Tl and Zn, suggest proximity to hotter and more central portions of potential porphyry systems at Toro North and Toro South. The higher values of molybdenum and Mo/Mn, Cu/Zn and Au/Ag at Toro North suggest that the potential porphyry centre is closer to the surface than at Toro South. These two target areas are characterized by the relatively high As, Bi, Cs, Li and Sb values. Toro Central shows relatively high Ag, Pb, Zn, Mn and Au. These results, the high Ag/Au and the low values of Au/Ag, Mo/Mn and Cu/Zn, are consistent with a peripheral or distal setting to a porphyry centre (s). In this case, it is interpreted that Toro Central represents the intermediate-sulfidation halo to potential porphyry centres at Toro North and Toro South. The locations of the geochemically anomalous zones and exploration targets are shown in the context of mapped geology in Figure 6. Additional figures in Appendix A (**Figures 8 through 14**) illustrate the sample locations and assay results for Cu, Au, Ag, Mo, Pb and Zn.


In summary, the geochemical results for Toro North are interpreted to show geochemical zoning characteristics of the upper parts of a Cu-Au porphyry system. Toro South shows geochemical zoning characteristics of Cu-Au-Ag epithermal type mineralization with potential for underlying Cu-Au porphyry-style mineralisation. Toro Central represents a more distal setting, characterized by Au-Ag-Pb-Zn-bearing (intermediate-sulfidation) epithermal type mineralization.




**Figure 2**: Gold-silver ratios for geochemical results from systematic rocks and talus in the Toro area. The highest Au/Ag values occur in Toro North and Toro South, which are inferred to indicate higher temperatures of metal deposition that characterize increasing proximity to porphyry centres.




**Figure 3**: Copper-zinc ratios geochemical results from systematic rocks and talus in the Toro target. The highest Cu/Zn occurs in Toro North and parts of Toro South, consistent with inferred higher temperatures of metals deposition.



*Figure 4*: Molybdenum-manganese ratios geochemical results from systematic rocks and talus in the Toro target. The highest Mo/Mn occur in Toro North, which is characteristic of porphyry-style mineralisation.



**Figure 5**: Silver-gold ratios geochemical results from systematic rocks and talus in the Toro target. Toro Central and South have the highest Ag/Au, which are interpreted to indicate that Toro Central is in a epithermal setting, distal to a porphyry centre(s), and that Toro South sits in the higher levels of a porphyry-epithermal system. The low values of Ag/Au at Toro North are consistent with the interpretation that the location of this target more proximal to a porphyry centre.



*Figure 6:* Geological map for the Toro project, showing the major zones of geochemical interest as summarized from the results presented in Figure 2-5.

#### **NEXT STEPS**

As anticipated, the official conclusion of the season is projected to be around April 30th, coinciding with the onset of the winter season, marked by the first snowfall approximately two weeks ago. The site team is currently wrapping up the closure procedures, having completed all field activities for the project. Only essential staff are permitted access to ensure the camp is secured for the winter season.

The forthcoming undertakings at the TMT Project encompass:

- Analyse and interpret geochemical findings concerning the Malambo target.
- Analysis of geochemical sampling and Anaconda geological mapping at the Tambo South.
- Conduct a comprehensive 3D geochemical analysis of results from the Toro North, Toro Central, Toro South, Malambo and Tambo projects.
- Completion of environmental baseline to ensure compliance with flora and fauna regulations.
- Interpretation of geophysics data (being procured from Segmar).
- Analysis of water samples collected for environmental baseline and compliance.
- Advance the water permit for drilling operations.
- The Malambo and Tambo Environmental Impact Assessments (EIAs) are being revised to expand the Malambo drilling permits from the current 2,000 meters to over 5,000 meters and acquire a new permit for Tambo drilling. Completion is anticipated within the next few months.
- Planning the site's reopening for around September.
- Engaging a camp management contractor.
- Engaging a civil contractor to complete the construction of the north access road, drill pad, and maintain existing access roads.
- Finalizing the selection process for drilling contractors.

#### This announcement has been authorised for release by the Board of Belararox.

| SHAREHOLDER |  |
|-------------|--|
| ENQUIRIES   |  |

Arvind Misra Managing Director Belararox Limited arvind.misra@belararox.com.au

### MEDIA ENQUIRIES

Julia Maguire The Capital Network

julia@thecapitalnetwork.com.au

GENERAL ENQUIRIES

Belararox Limited

info@belararox.com.au

#### ABOUT BELARAROX LIMITED (ASX: BRX)

Belararox is a mineral explorer focused on securing and developing resources to meet the surge in demand from the technology, battery, and renewable energy markets. Our projects currently include the potential for zinc, copper, gold, silver, nickel, and lead resources.

Situated within Argentina's San Juan Province, the Toro, Malambo, and Tambo (TMT) project occupies an unexplored area between the prolifically-mineralized El Indio and Maricunga Metallogenic Belts.

Belararox has already successfully identified numerous promising targets within the TMT project. These targets are set to undergo thorough exploration as part of an extensive program led by an experienced Belararox team that is currently present on-site in Argentina.

#### **COMPETENT PERSON STATEMENT (TMT PROJECT, ARGENTINA)**

The information in this announcement to which this statement is attached relates to Exploration Results and is based on information compiled by Jason Ward. Mr Ward is director of Condor Prospecting, a director of Belararox Limited, and is a Competent Person who is a Fellow and Chartered Professional of the Australasian Institute of Mining and Metallurgy. Mr Ward has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the exploration techniques being used to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Ward has consented to the inclusion in this announcement of the matters based on his information in the form and context in which it appears. Mr Ward is one of the project vendors and currently director of Fomo Venture No 1 Pty Ltd.

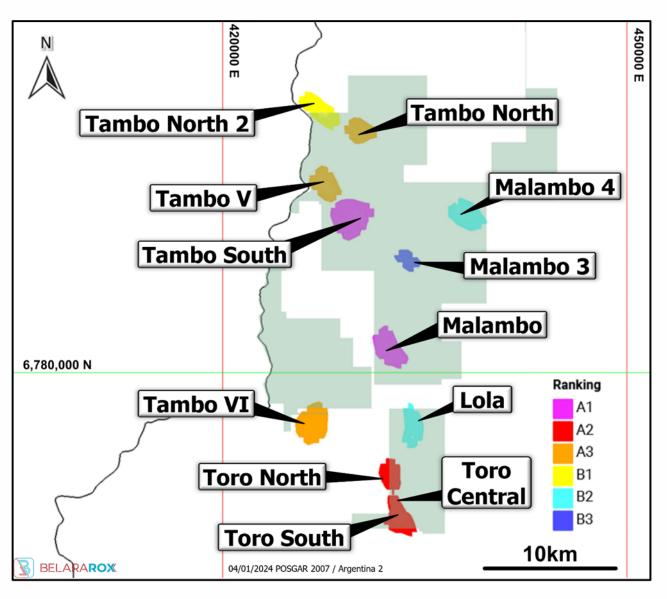
#### FORWARD LOOKING STATEMENTS

This report contains forward looking statements concerning the projects owned by Belararox Limited. Statements concerning mining reserves and resources and exploration interpretations may also be deemed to be forward looking statements in that they involve estimates based on specific assumptions. Forward-looking statements are not statements of historical fact and actual events, and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward looking statements are based on management's beliefs, opinions and estimates as of the dates the forward - looking statements are made and no obligation is assumed to update forward looking statements.

ELAROX LIN

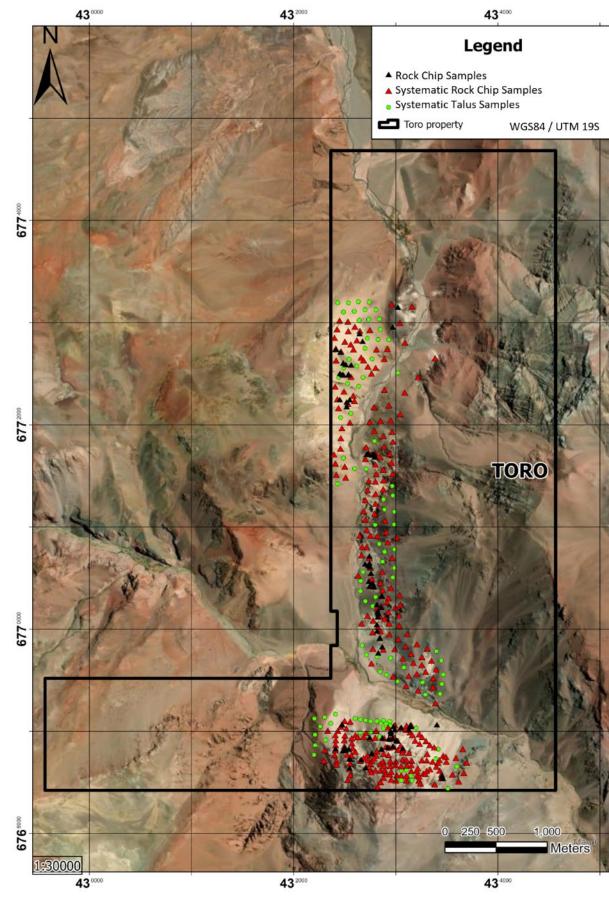
#### REFERENCES




Ausenco Engineering Canada Inc. (2023, Mar 17). Filo del Sol Project NI 43-101 Technical Report, Updated Prefeasibility Study. Effective Date Feb 28, 2023: Available from Sedar (Filo Mining Corp.): https://www.sedar.com/.

- BRX ASX Release. (2023.a, May 23). Amended Announcement: Porphyry Prospectivity Confirmed with additional TMT targets identified. ASX Release: https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02668862-6A1151338.
- BRX ASX Release. (2023.b, Oct 30). TMT Project Field Work Commenced and Additional High Sulphide Epithermal & Porphyry Targets Characterised. ASX Release: https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02731977-6A1177136.
- BRX ASX Release. (2023.b, Dec 12). TMT Project Field Work Update. ASX Release accessed via: https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02753053-6A1186110.
- BRX ASX Release. (2023.b, Jul 17). TMT Project in Argentina Significant Zonc Mineralisation (266m @ 0.76% Zn) verified and reported under the JORC (2012) Code. ASX Release: https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02687057-6A1158529.
- BRX ASX Release. (2024, Jan 22). TMT Project Operational Update: Geological Mapping Supports the Porphyry Potential at Toro. ASX Release:https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02764163-6A1190246.
- RX ASX Release. (2024, Feb 22)<sup>•</sup> TMT Project Toro Surface Sample Assay Results and Geology Strengthen the Interpretation of a Porphyry Mineralisation / Epithermal Mineralisation. **ASX Release:https://cdnapi.markitdigital.**com/**apiman- gateway/ASX/asx-research/1.0/file/2924-02764163-6A1190246**.
- Garwin, S. (2019). The geological characteristics, geochemical signature and geophysical expression of porphyry copper-(gold) deposits in the circum-Pacific region, Australian Exploration Geoscience Conference, Perth, 2-5 September, 2019, Extended Abstracts, 1, 1-4.
- Garwin, S. (2023, May 18). Toro Investor Presentation: Intepretation of Satellite Spectral Imagery and Cu-Au-Ag-(Zn) Prospectivity: TMT Project - Area of Interest San Juan Province, Argentina. ASX Release: https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02670283-151872.
- Holley, E. A. (2012). The Veladero High-Sulfidation Epithermal Au-Ag Deposit, Argentina: Volcanic Stratigraphy, Alteration, Mineralization, and Quartz Paragenesis. Doctor of Geology Thesis submitted to Colorado School of Mines: https://repository.mines.edu/handle/11124/76805?show=full.

Yahoo finance. (2024, Mar 15). NGEx and Filo Mining market cap.


#### **APPENDIX A: ADDITIONAL IMAGES**

Over the current field season (2023-2024) the fieldwork has moved northwards towards the Tambo South target, with the fieldwork progression from the Toro South, Toro Central, and Toro North targets through the Malambo target, as shown **in Figure 7**.



*Figure 7:* Twelve (12) prospective targets for hydrothermal alteration associated with porphyry mineralisation and/or epithermal mineral systems have been delineated in the TMT project, based on the study of satellite-deduced hydrothermal alteration [Modified from (Garwin, 2023)]

BELARAROX LIMITE



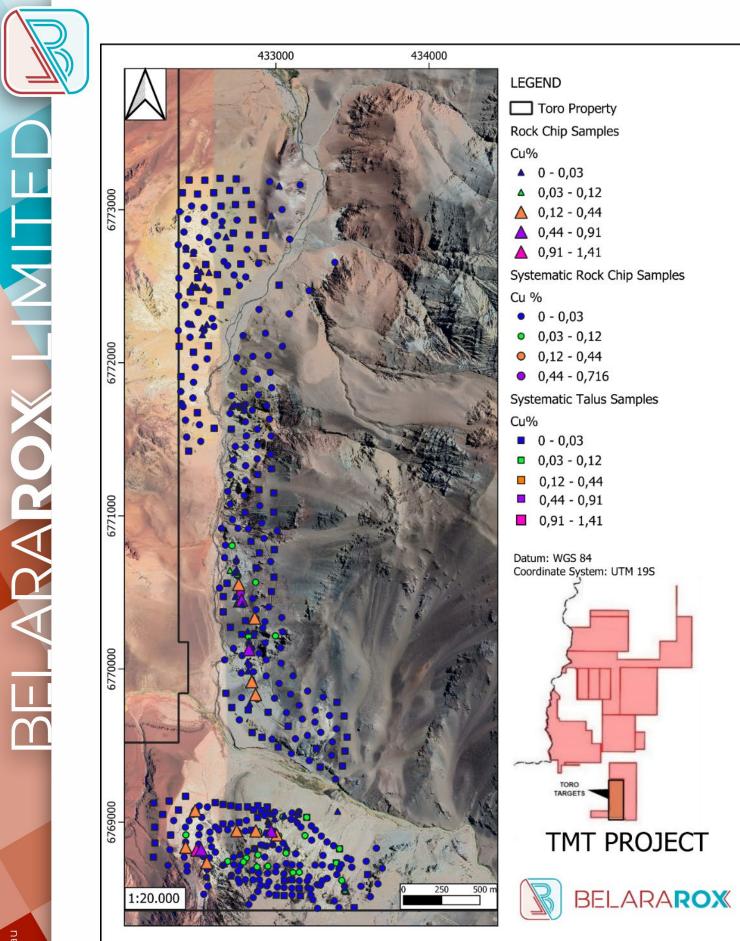
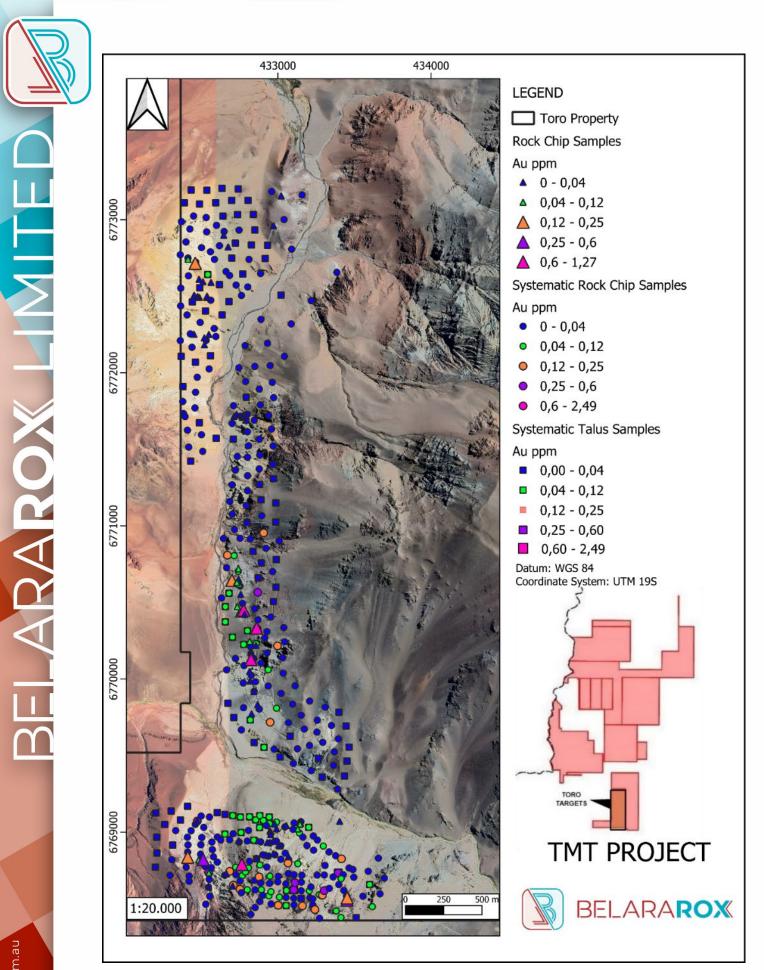
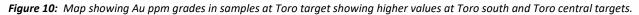
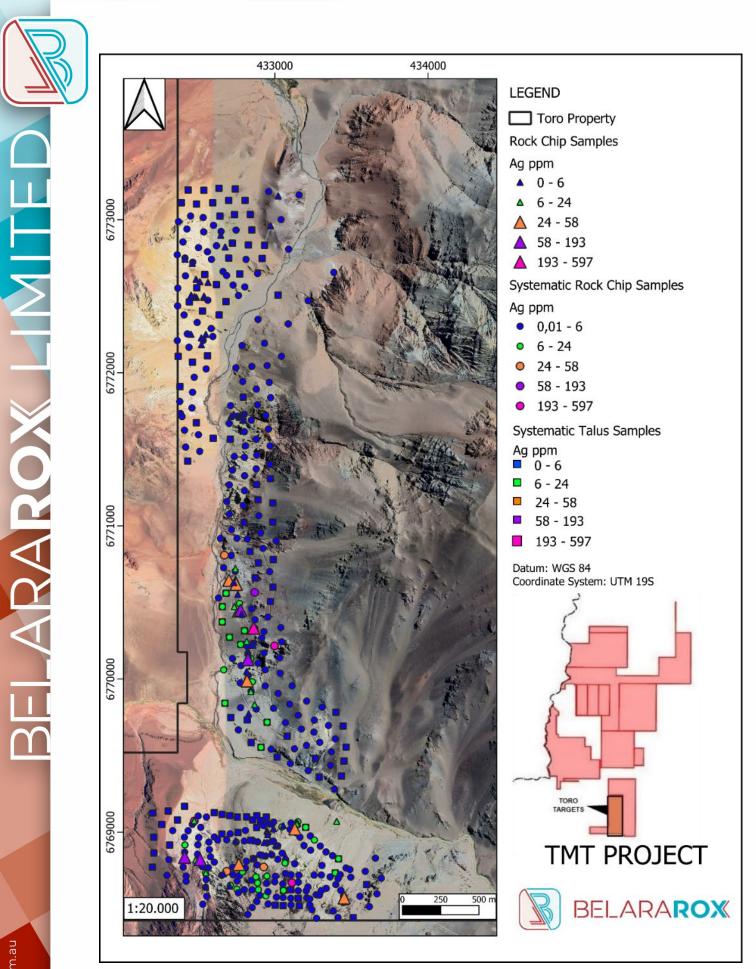
677 4000

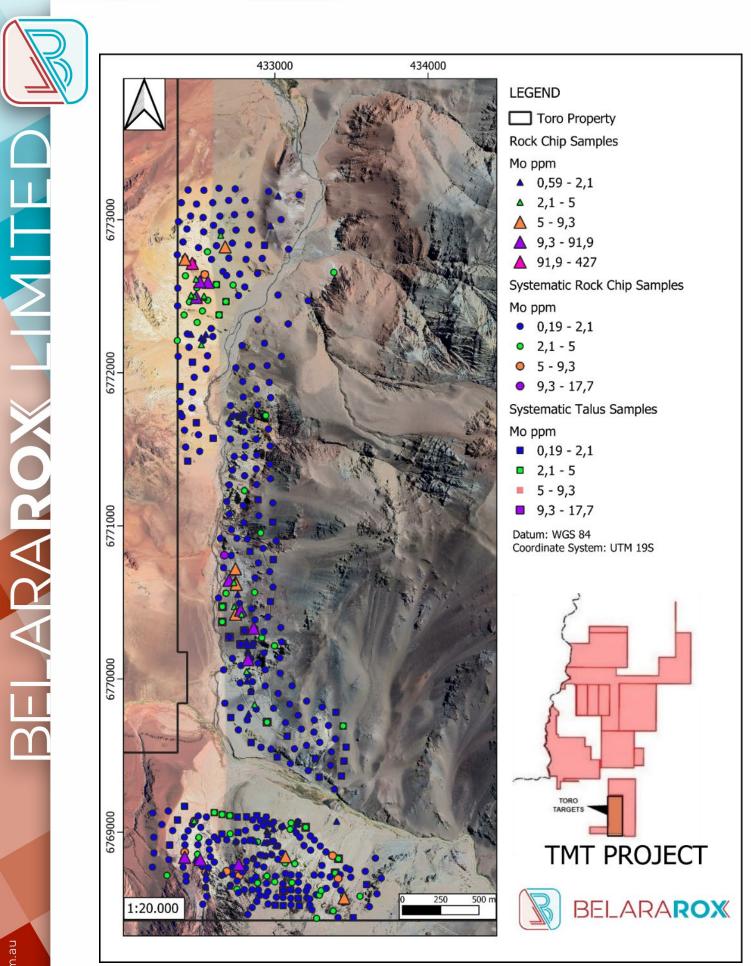
6772

677°

676 80

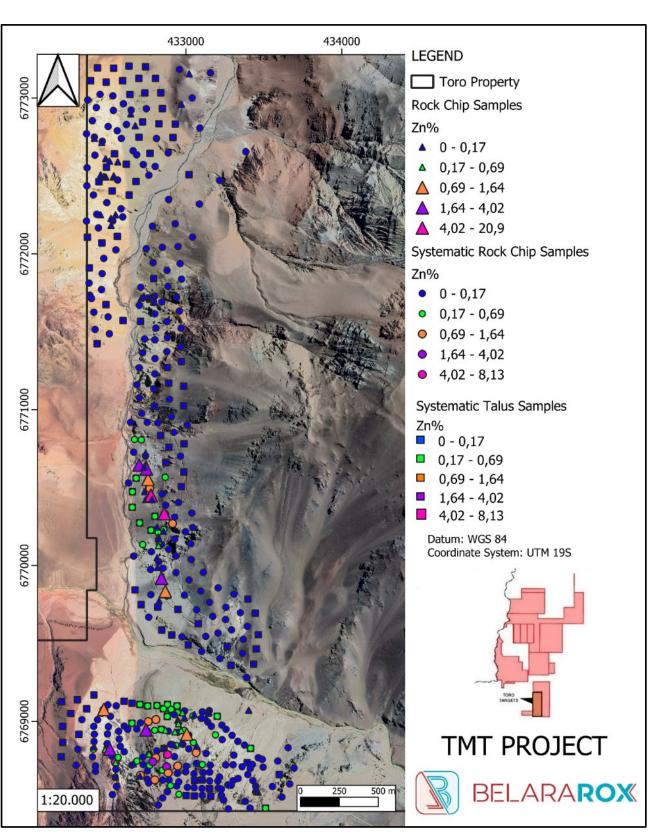
Figure 8: Map showing all sample locations on Toro tenement.

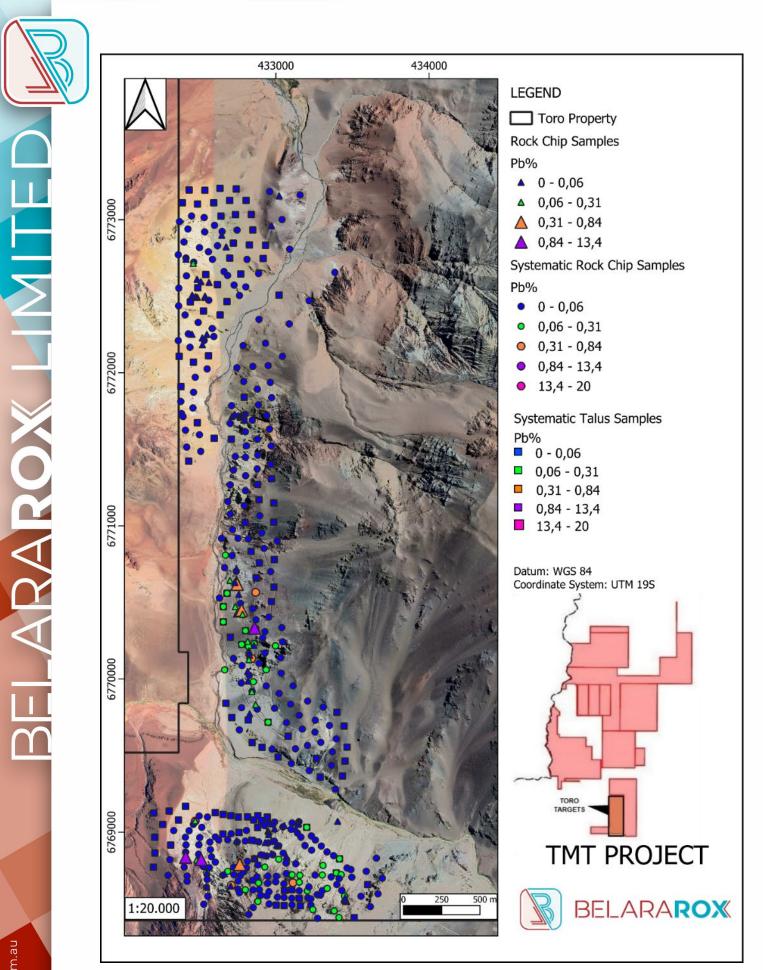


Figure 9: Map showing Cu% in samples at Toro target.

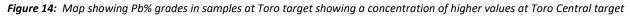







*Figure 11:* Map showing Ag ppm grades in samples at Toro target showing a concentration of higher values at Toro south and Toro central targets.





*Figure 12:* Map showing Mo ppm grades in samples at Toro target showing a concentration of higher values at Toro North and Toro South targets.

BELAROX LIMITE



*Figure 13:* Map showing Zn% grades in samples at Toro target showing a concentration of higher values at Toro Central target.





#### **APPENDIX B: MATERIAL GEOCHEMICAL RESULTS FOR TORO TARGET**

In the compilation of these tables, geochemical sample results are indicated for any systematic or selective samples that exceed the following thresholds: Au > 0.1ppm; Ag > 10ppm, Mo > 10ppm, Pb > 2000ppm and Zn > 2000ppm.

|           | TORO SOUTH     |                    |                |                 |                 |             |             |             |             |             |             |             |             |             |             |             |             |             |
|-----------|----------------|--------------------|----------------|-----------------|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| SAMPLE ID | type of sample | Coordinate system  | Easting<br>(m) | Northing<br>(m) | Altitude<br>(m) | Au<br>(ppm) | Ag<br>(ppm) | As<br>(ppm) | Bi<br>(ppm) | Cu<br>(ppm) | Pb<br>(ppm) | Zn<br>(ppm) | Li<br>(ppm) | Tİ<br>(ppm) | Sb<br>(ppm) | Mo<br>(ppm) | Mn<br>(ppm) | Cs<br>(ppm) |
| TMTA00001 | chip           | WGS84 UTM Zone 19S | 432978,05      | 6769054,15      | 3390,425        | 0,024       | 5,04        | 86,5        | 2,74        | 170         | 137,5       | 2650        | 278         | 2,28        | 23,5        | 1,13        | 1445        | 7,56        |
| TMTA00004 | chip           | WGS84 UTM Zone 19S | 432951,84      | 6768983,65      | 3447,448        | 0,011       | 0,453       | 36          | 0,174       | 217         | 39,7        | 2920        | 375         | 2,91        | 7,26        | 1,2         | 1165        | 16,15       |
| TMTA00007 | chip           | WGS84 UTM Zone 19S | 433450,74      | 6768555,62      | 3545,806        | 0,378       | 23,9        | 1015        | 57,2        | 545         | 587         | 822         | 36,2        | 0,6         | 229         | 2,45        | 544         | 2,1         |
| TMTA00008 | chip           | WGS84 UTM Zone 19S | 433451,61      | 6768571,06      | 3533,255        | 0,184       | 52,1        | 2820        | 145,5       | 96,8        | 281         | 107         | 19,2        | 1,42        | 716         | 6,41        | 121,5       | 4,18        |
| TMTA00016 | chip           | WGS84 UTM Zone 19S | 433005,03      | 6768916,26      | 3497,378        | 0,0025      | 0,053       | 13,1        | 0,095       | 1760        | 20,7        | 6920        | 844         | 1,495       | 8,22        | 0,86        | 2450        | 13,7        |
| TMTA00017 | chip           | WGS84 UTM Zone 19S | 432969,47      | 6768940,72      | 3480,914        | 0,0025      | 0,036       | 9,42        | 0,056       | 9090        | 8,96        | 3010        | 144,5       | 1,615       | 2,87        | 1,2         | 1215        | 7,91        |
| TMTA00018 | chip           | WGS84 UTM Zone 19S | 432929,56      | 6768932,34      | 3480,899        | 0,0025      | 0,05        | 11,95       | 0,057       | 145,5       | 6,12        | 3680        | 174         | 1,135       | 2,88        | 1,56        | 2410        | 6,95        |
| TMTA00019 | chip           | WGS84 UTM Zone 19S | 432868,8       | 6768942,64      | 3468,344        | 0,006       | 0,262       | 15,05       | 0,049       | 4400        | 146,5       | 2500        | 150,5       | 2,34        | 3,67        | 1,05        | 1505        | 7,81        |
| TMTA00021 | float          | WGS84 UTM Zone 19S | 433402,77      | 6769070,84      | 3279,485        | 0,034       | 17,1        | 635         | 7,53        | 39,2        | 71,8        | 49,9        | 34,6        | 1,81        | 207         | 1,81        | 408         | 7,16        |
| TMTA00032 | chip           | WGS84 UTM Zone 19S | 433140,93      | 6769062,21      | 3361,744        | 0,114       | 4,03        | 106,5       | 3,43        | 18,9        | 36          | 54,6        | 27,6        | 1,93        | 154,5       | 1,65        | 605         | 4,01        |
| TMTA00033 | chip           | WGS84 UTM Zone 19S | 433148,15      | 6769057,49      | 3361,977        | 0,025       | 4,7         | 140         | 4,2         | 37,2        | 308         | 61,9        | 26,6        | 2,31        | 76,5        | 1,96        | 767         | 4,22        |
| TMTA00034 | chip           | WGS84 UTM Zone 19S | 433142,84      | 6769051,7       | 3368,44         | 0,105       | 3,44        | 187         | 74          | 24          | 120         | 43,3        | 30,4        | 2,14        | 112,5       | 1,3         | 809         | 5,95        |
| TMTA00035 | chip           | WGS84 UTM Zone 19S | 433143,41      | 6769052,81      | 3367,397        | 0,056       | 13,85       | 259         | 12,35       | 27,8        | 107,5       | 60,6        | 25,7        | 2,5         | 376         | 1,54        | 771         | 7,18        |
| TMTA00036 | chip           | WGS84 UTM Zone 19S | 433129,8       | 6769021,04      | 3388,06         | 0,119       | 31,4        | 679         | 26,4        | 33,6        | 30,9        | 52,1        | 26          | 2,75        | 610         | 1,63        | 710         | 3,91        |
| TMTA00037 | chip           | WGS84 UTM Zone 19S | 433054,42      | 6769043,42      | 3382,264        | 0,025       | 1,645       | 90,9        | 2,31        | 46,6        | 224         | 1700        | 25,7        | 2,12        | 12,65       | 1,3         | 1700        | 4,17        |
| TMTA00038 | chip           | WGS84 UTM Zone 19S | 432744         | 6768944         | 3454,779        | 0,019       | 3,73        | 107         | 2,88        | 2410        | 352         | 26400       | 41,4        | 2,37        | 32,2        | 1,18        | 3750        | 9,04        |
| TMTA00040 | chip           | WGS84 UTM Zone 19S | 432540         | 6768833         | 3456,036        | 0,082       | 421         | 267         | 23,6        | 678         | 200000      | 1005        | 61,4        | 0,84        | 1085        | 2,71        | 1305        | 12,5        |
| TMTA00051 | grab           | WGS84 UTM Zone 19S | 432764         | 6768790         | 3560,002        | 1,275       | 36,9        | 346         | 11,35       | 176,5       | 5190        | 2060        | 46,6        | 1,27        | 16,25       | 91,9        | 6130        | 44          |
| TMTA00052 | chip           | WGS84 UTM Zone 19S | 432499         | 6768848         | 3447,711        | 0,053       | 1,985       | 35,2        | 0,049       | 744         | 2270        | 1375        | 30          | 1,955       | 32,4        | 2,58        | 1070        | 8,01        |
| TMTA00053 | grab           | WGS84 UTM Zone 19S | 432482         | 6768818         | 3458,854        | 0,075       | 21,3        | 420         | 0,065       | 14050       | 965         | 2640        | 43,1        | 1,14        | 386         | 2,05        | 8890        | 6,64        |
| TMTA00054 | chip           | WGS84 UTM Zone 19S | 432512         | 6768821         | 3456,199        | 0,495       | 193         | 1210        | 0,674       | 7400        | 134000      | 27400       | 21,7        | 0,73        | 3630        | 12,6        | 11400       | 4,09        |
| TMTA00055 | grab           | WGS84 UTM Zone 19S | 432549         | 6768735         | 3526,024        | 0,104       | 10,75       | 375         | 2,82        | 1240        | 291         | 3590        | 137,5       | 2,53        | 253         | 1,6         | 14200       | 9,8         |
| TMTA00058 | grab           | WGS84 UTM Zone 19S | 432473         | 6769075         | 3368,366        | 0,016       | 8,19        | 25,6        | 0,042       | 2510        | 3060        | 12600       | 29,3        | 2,07        | 26,4        | 4,41        | 4490        | 4,61        |
| TMTA00059 | chip           | WGS84 UTM Zone 19S | 432411         | 6768836         | 3467,436        | 0,215       | 141         | 284         | 6,02        | 1215        | 50500       | 636         | 41,3        | 1,245       | 628         | 10,95       | 485         | 5,32        |

|           |                |                    |                |                 |                 | TORC        | ) SOU       | ТН          |             |             |             |             |             |             |             |             |             |          |
|-----------|----------------|--------------------|----------------|-----------------|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------|
| SAMPLE ID | type of sample | Coordinate system  | Easting<br>(m) | Northing<br>(m) | Altitude<br>(m) | Au<br>(ppm) | Ag<br>(ppm) | As<br>(ppm) | Bi<br>(ppm) | Cu<br>(ppm) | Pb<br>(ppm) | Zn<br>(ppm) | Li<br>(ppm) | Tl<br>(ppm) | Sb<br>(ppm) | Mo<br>(ppm) | Mn<br>(ppm) | С<br>(рр |
| FMTB00011 | pannel         | WGS84 UTM Zone 19S | 432807,4       | 6769011,06      | 3427,05         | 0,012       | 0,478       | 40,9        | 0,18        | 103,5       | 133         | 13850       | 323         | 2,6         | 4,2         | 1,47        | 4720        | 8        |
| FMTB00018 | pannel         | WGS84 UTM Zone 19S | 432747,28      | 6768935,25      | 3463,97         | 0,013       | 6,59        | 79,8        | 3,56        | 1230        | 419         | 12300       | 35          | 2,7         | 62,4        | 1,72        | 2340        | 7,       |
| FMTB00019 | pannel         | WGS84 UTM Zone 19S | 432799,64      | 6768941,87      | 3466,06         | 0,03        | 2,38        | 47,7        | 3,19        | 124         | 16,5        | 2090        | 25          | 2,31        | 16          | 1,2         | 1015        | 5        |
| FMTB00024 | pannel         | WGS84 UTM Zone 19S | 432989,5       | 6768941,22      | 3482,2          | 0,0025      | 0,048       | 6,75        | 0,065       | 162         | 9,61        | 4920        | 568         | 1,28        | 4,95        | 1,4         | 5290        | 12       |
| IMTB00026 | pannel         | WGS84 UTM Zone 19S | 433047,7       | 6768862,67      | 3500,3          | 0,0025      | 0,558       | 14,45       | 0,056       | 173         | 426         | 6480        | 170         | 3,01        | 4,26        | 1,07        | 8480        | 9        |
| FMTB00028 | chip           | WGS84 UTM Zone 19S | 433065,51      | 6768797,93      | 3536,07         | 0,25        | 10,15       | 294         | 23,9        | 722         | 93,4        | 10850       | 34,8        | 1,455       | 69          | 2,54        | 1115        | 4        |
| FMTB00032 | chip           | WGS84 UTM Zone 19S | 432937,48      | 6768843,4       | 3520,68         | 0,005       | 0,124       | 30,7        | 0,066       | 63,6        | 15,15       | 2540        | 289         | 3,32        | 5,18        | 0,74        | 1765        | 1        |
| FMTB00038 | chip           | WGS84 UTM Zone 19S | 432684,93      | 6768744,08      | 3561,22         | 0,153       | 58          | 413         | 63,1        | 469         | 1405        | 2690        | 25,4        | 3,08        | 250         | 5,54        | 1280        | 2        |
| ГМТВ00040 | chip           | WGS84 UTM Zone 19S | 432766,85      | 6768715,31      | 3604,48         | 0,087       | 1,69        | 346         | 1,49        | 51,4        | 469         | 2500        | 57,2        | 2,93        | 4,93        | 8,55        | 8340        | 1        |
| FMTB00042 | chip           | WGS84 UTM Zone 19S | 432708,69      | 6768653,58      | 3621,2          | 0,228       | 11,7        | 372         | 5,14        | 131         | 7570        | 10650       | 156         | 1,875       | 27,7        | 0,75        | 72300       | 1        |
| ГМТВ00043 | chip           | WGS84 UTM Zone 19S | 432752,01      | 6768627,13      | 3653,12         | 0,203       | 8,92        | 972         | 2,45        | 33,9        | 347         | 1010        | 36,7        | 2,75        | 29,2        | 2,15        | 1000        | 3        |
| IMTB00044 | chip           | WGS84 UTM Zone 19S | 432800,05      | 6768623,98      | 3667,89         | 0,106       | 1,325       | 451         | 0,182       | 31,2        | 816         | 16350       | 144,5       | 3,01        | 21,6        | 0,51        | 28800       | 2        |
| ГМТВ00046 | chip           | WGS84 UTM Zone 19S | 432891,82      | 6768623,86      | 3676,63         | 0,099       | 19,4        | 404         | 2,85        | 16,1        | 172,5       | 91,9        | 46          | 2,83        | 149         | 1,32        | 703         | 1        |
| ГМТВ00047 | chip           | WGS84 UTM Zone 19S | 432901,08      | 6768587,02      | 3701,7          | 0,008       | 0,122       | 50,1        | 0,231       | 135,5       | 14,45       | 2100        | 94,1        | 2,06        | 6,25        | 1,22        | 9800        | 2        |
| ГМТВ00052 | chip           | WGS84 UTM Zone 19S | 433447         | 6768546         | 3555,08         | 0,408       | 110         | 4290        | 212         | 157         | 388         | 162         | 19,7        | 2,31        | 2460        | 7,78        | 160,5       | 1        |
| FMTB00053 | chip           | WGS84 UTM Zone 19S | 432807         | 6768766         | 3580,81         | 0,099       | 2,25        | 201         | 3,29        | 419         | 69,5        | 14300       | 221         | 2,27        | 12,3        | 0,5         | 23000       | 1        |
| ГМТВ00054 | chip           | WGS84 UTM Zone 19S | 432788         | 6768740         | 3589,17         | 0,052       | 6,07        | 319         | 4,79        | 1035        | 205         | 40200       | 106,5       | 1,365       | 67,1        | 1,8         | 27000       | 1        |
| ГМТВ00060 | chip           | WGS84 UTM Zone 19S | 432547,23      | 6768735,73      | 3524,93         | 0,596       | 17,65       | 761         | 19,4        | 814         | 813         | 81300       | 52          | 0,994       | 55,9        | 7,24        | 25900       | 4        |
| ГМТВ00063 | chip           | WGS84 UTM Zone 19S | 432498,97      | 6768824,31      | 3453,61         | 0,006       | 1,495       | 24,7        | 0,147       | 16,3        | 419         | 12150       | 55,8        | 2,56        | 96,3        | 3,75        | 5370        | 4        |
| гмтвооо69 | chip           | WGS84 UTM Zone 19S | 432565,22      | 6768767,86      | 3509,27         | 0,016       | 1,12        | 28,4        | 0,744       | 20,5        | 158,5       | 2840        | 51,3        | 1,85        | 8,81        | 1,18        | 8540        | 6        |
| ГМТВ00075 | chip           | WGS84 UTM Zone 19S | 433045,24      | 6769033,95      | 3392,59         | 0,024       | 8,1         | 186         | 5,9         | 587         | 27,6        | 5470        | 25,9        | 2,38        | 77,6        | 1,12        | 3810        |          |
| ГМТВ00079 | chip           | WGS84 UTM Zone 19S | 433189,54      | 6768912,14      | 3413,43         | 0,041       | 4,73        | 195         | 5,93        | 542         | 126         | 1940        | 42.5        | 2,48        | 112.5       | 1,52        | 921         |          |
| ГМТВ00106 | chip           | WGS84 UTM Zone 19S | 432407,13      | 6768820,22      | 3473,76         | 0.011       | 0,287       | 4,34        | 0,069       | 714         | 79,4        | 5950        | 33,4        | 1,85        | 3,76        | 6,4         | 2980        | 1        |
| FMTB00108 | chip           | WGS84 UTM Zone 19S | 432412,69      | 6768916,43      | 3438,7          | 0,0025      | 9,88        | 38,2        | 0,817       | 625         | 16          | 45,8        | 82,3        | 1,12        | 52,3        | 1,96        | 2100        | 1        |
| TMTB00112 | chip           | WGS84 UTM Zone 19S | 432473,59      | 6769072,25      | 3369,41         | 0,599       | 355         | 250         | 0,172       | 3320        | 200000      | 77200       | 15,8        | 0,743       | 1250        | 16,15       | 14550       |          |
| FMTB00708 | chip           | WGS84 UTM Zone 19S | 432848.2       | 6768685.76      | 3646.14         | 0.007       | 0.807       | 6.67        | 0.463       | 10.75       | 55.9        | 2950        | 38.3        | 2.52        | 6.35        | 1.42        | 4930        |          |
| ГМТВ00709 | chip           | WGS84 UTM Zone 19S | 432882.21      | 6768786.02      | 3598.46         | 0.055       | 2.06        | 237         | 1.73        | 704         | 90.6        | 45100       | 220         | 2,66        | 7,74        | 0,39        | 14700       |          |
| MTB00710  | chip           | WGS84 UTM Zone 19S | 432876,26      | 6768707,75      | 3646,5          | 0,167       | 8,24        | 646         | 6,61        | 364         | 213         | 28300       | 67,3        | 2,15        | 18,6        | 2           | 6770        |          |
| MTB00711  | chip           | WGS84 UTM Zone 19S | 432886,02      | 6768667,92      | 3665,81         | 0,029       | 6,49        | 84,6        | 3,04        | 58,4        | 750         | 14150       | 445         | 2,16        | 38,8        | 3,59        | 36100       |          |
| MTB00712  | chip           | WGS84 UTM Zone 19S | 432927,01      | 6768772,21      | 3617,42         | 0,032       | 46,2        | 541         | 22,4        | 143         | 794         | 461         | 36,7        | 3,15        | 644         | 1,46        | 1220        |          |
| TMTB00713 | chip           | WGS84 UTM Zone 195 | 432947,58      | 6768712,72      | 3646,06         | 0,052       | 8,35        | 127,5       | 9,67        | 1165        | 510         | 9630        | 44          | 1,94        | 170,5       | 2,51        | 4750        |          |
| IMTB00716 | chip           | WGS84 UTM Zone 195 | 432955.26      | 6768530.93      | 3713,08         | 0.016       | 0.097       | 12.3        | 0.205       | 20          | 10.6        | 3290        | 81,7        | 2,11        | 7,02        | 1,2         | 6700        |          |
| TMTB00722 | chip           | WGS84 UTM Zone 195 | 433001,78      | 6768522,56      | 3701,34         | 0.128       | 0,037       | 756         | 0,238       | 5,74        | 19,8        | 66,1        | 382         | 2,74        | 14,55       | 0,76        | 343         |          |
| IMTB00722 | chip           | WGS84 UTM Zone 195 | 433111.15      | 6768670.02      | 3596.06         | 0,120       | 449         | 2660        | 55.9        | 935         | 4160        | 711         | 22.1        | 2,62        | 4080        | 4,86        | 738         | +        |
| ГМТВ00734 | chip           | WGS84 UTM Zone 195 | 433105,6       | 6768721,4       | 3572,92         | 0,401       | 1,725       | 61,3        | 0,364       | 16,7        | 1705        | 5380        | 271         | 2,02        | 23,9        | 0,38        | 32500       |          |
| IMTB00738 | chip           | WGS84 UTM Zone 195 | 433152.34      | 6768673,25      | 3611,27         | 0.024       | 2.57        | 30.2        | 0,304       | 10,7        | 823         | 318         | 45.1        | 2,4         | 15.05       | 1,22        | 4810        |          |
| IMTB00738 | chip           | WGS84 UTM Zone 195 | 433241.27      | 6768494.27      | 3678.89         | 0,024       | 3.16        | 117         | 1,575       | 13.8        | 968         | 60,9        | 44.9        | 1.55        | 61.8        | 1,62        | 583         |          |
| TMTB00743 | chip           | WGS84 UTM Zone 195 | 433290,3       | 6768588,41      | 3610,24         | 0,132       | 1,47        | 136,5       | 0,878       | 51,6        | 197         | 949         | 29,8        | 1,965       | 10,3        | 3,08        | 515         | 5        |
| IMTB00751 | chip           | WGS84 UTM Zone 195 | 433301,98      | 6768618,06      | 3590,4          | 0,359       | 1,135       | 274         | 2,42        | 81,5        | 31          | 247         | 31,3        | 1,745       | 7,38        | 2,24        | 431         | 6        |

| TORO SOUTH |                |                    |                |                 |                 |             |             |             |             |             |             |             |             |             |             |             |             |             |
|------------|----------------|--------------------|----------------|-----------------|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| SAMPLE ID  | type of sample | Coordinate system  | Easting<br>(m) | Northing<br>(m) | Altitude<br>(m) | Au<br>(ppm) | Ag<br>(ppm) | As<br>(ppm) | Bi<br>(ppm) | Cu<br>(ppm) | Pb<br>(ppm) | Zn<br>(ppm) | Li<br>(ppm) | Tl<br>(ppm) | Sb<br>(ppm) | Mo<br>(ppm) | Mn<br>(ppm) | Cs<br>(ppm) |
| TMTB00003  | Colluvium      | WGS84 UTM Zone 19S | 432705,2359    | 6769107,74      | 3341,104        | 0,052       | 4,29        | 137         | 4,7         | 146         | 267         | 4470        | 143,5       | 1,33        | 28,6        | 2,87        | 3190        | 19,05       |
| TMTB00004  | Colluvium      | WGS84 UTM Zone 19S | 432754,7769    | 6769098,62      | 3352,673        | 0,05        | 3,44        | 156         | 3,07        | 137,5       | 311         | 4200        | 153         | 1,51        | 24,7        | 2,03        | 4570        | 21,3        |
| TMTB00006  | Colluvium      | WGS84 UTM Zone 19S | 432855,2113    | 6769079,82      | 3377,271        | 0,062       | 5,74        | 202         | 4,29        | 262         | 356         | 5120        | 157         | 1,715       | 50,7        | 1,81        | 5170        | 21,7        |
| TMTB00007  | Colluvium      | WGS84 UTM Zone 19S | 432905,008     | 6769076,12      | 3381,255        | 0,07        | 5,57        | 250         | 6,05        | 271         | 583         | 5360        | 182,5       | 1,89        | 53,9        | 1,73        | 4630        | 23,1        |
| TMTB00008  | Colluvium      | WGS84 UTM Zone 19S | 432944,2994    | 6769056,07      | 3390,686        | 0,052       | 4,63        | 212         | 4,19        | 243         | 546         | 5450        | 178         | 1,705       | 49,3        | 1,9         | 5420        | 24          |
| TMTB00010  | Colluvium      | WGS84 UTM Zone 19S | 432879,9983    | 6769030,01      | 3415,735        | 0,072       | 5,39        | 167         | 3,11        | 187,5       | 280         | 4680        | 153,5       | 1,46        | 42,1        | 1,43        | 4720        | 24,2        |
| TMTB00012  | Colluvium      | WGS84 UTM Zone 19S | 432758,8669    | 6768997,7       | 3424,452        | 0,076       | 3,39        | 163         | 2,69        | 189         | 332         | 7910        | 133         | 1,495       | 21,6        | 1,57        | 5730        | 20,8        |
| TMTB00014  | Colluvium      | WGS84 UTM Zone 19S | 432653,8396    | 6768987,22      | 3421,138        | 0,098       | 3,97        | 293         | 2,3         | 120         | 466         | 5020        | 186         | 2,12        | 35          | 1,16        | 8720        | 35,4        |
| TMTB00021  | Colluvium      | WGS84 UTM Zone 19S | 432842,0922    | 6768947,66      | 3463,652        | 0,056       | 4,85        | 240         | 5,18        | 220         | 378         | 4500        | 148,5       | 1,84        | 60,1        | 1,8         | 5740        | 26,4        |
| TMTB00034  | Colluvium      | WGS84 UTM Zone 19S | 432860,1094    | 6768825,11      | 3529,039        | 0,072       | 5,72        | 313         | 4,72        | 394         | 483         | 5710        | 148,5       | 2,23        | 63,4        | 1,8         | 6780        | 31,3        |
| TMTB00071  | Colluvium      | WGS84 UTM Zone 19S | 432814,4521    | 6769100,41      | 3354,53         | 0,064       | 4,6         | 158         | 2,48        | 166,5       | 291         | 4850        | 144         | 1,57        | 34,1        | 1,38        | 4880        | 23,7        |
| TMTB00072  | Colluvium      | WGS84 UTM Zone 19S | 432881,4908    | 6769107,56      | 3347,638        | 0,056       | 4,83        | 165         | 2,82        | 192,5       | 352         | 4860        | 153         | 1,75        | 45,6        | 1,5         | 5290        | 21,8        |
| TMTB00073  | Colluvium      | WGS84 UTM Zone 19S | 432943,2687    | 6769098,62      | 3352,065        | 0,05        | 5,1         | 190         | 3,57        | 216         | 397         | 4960        | 170         | 1,735       | 44,3        | 1,48        | 4760        | 23,1        |
| TMTB00083  | Colluvium      | WGS84 UTM Zone 19S | 433200,704     | 6769031,65      | 3356,205        | 0,113       | 11,65       | 310         | 10,65       | 423         | 713         | 3720        | 198         | 2,28        | 167         | 2,29        | 4530        | 26,2        |
| TMTB00089  | Colluvium      | WGS84 UTM Zone 19S | 433414,5105    | 6768825,92      | 3379,084        | 0,207       | 12,7        | 344         | 11,65       | 403         | 1230        | 1955        | 140,5       | 2,14        | 155,5       | 2,85        | 3340        | 24,1        |
| TMTB00096  | Colluvium      | WGS84 UTM Zone 19S | 433393,2692    | 6768733,51      | 3443,548        | 0,305       | 11,7        | 360         | 11,05       | 318         | 1910        | 1050        | 146,5       | 2,37        | 161,5       | 3,71        | 2720        | 28,3        |
| TMTB00123  | Colluvium      | WGS84 UTM Zone 19S | 433435,9991    | 6768409         | 3625,927        | 0,024       | 0,557       | 60,4        | 0,354       | 88,8        | 124,5       | 3100        | 275         | 3,33        | 7,63        | 0,52        | 11200       | 45,9        |
| TMTB00124  | Colluvium      | WGS84 UTM Zone 19S | 433464,9998    | 6768366         | 3611,125        | 0,195       | 5,25        | 225         | 2,59        | 91,5        | 390         | 1065        | 149,5       | 2,36        | 55,3        | 1,61        | 5340        | 36,3        |
| TMTB00383  | Colluvium      | WGS84 UTM Zone 19S | 433510,7479    | 6768441,66      | 3592,46         | 0,038       | 0,271       | 116         | 0,283       | 93,5        | 38,8        | 2630        | 91,1        | 1,67        | 9,86        | 0,42        | 7790        | 25,4        |
| TMTB00723  | Colluvium      | WGS84 UTM Zone 19S | 433001,7754    | 6768522,56      | 3701,336        | 0,108       | 3,19        | 217         | 1,305       | 82          | 299         | 1715        | 157,5       | 2,81        | 52,4        | 0,85        | 5720        | 48,7        |
| TMTB00726  | Colluvium      | WGS84 UTM Zone 19S | 433055,1612    | 6768618,94      | 3654,83         | 0,101       | 14,5        | 579         | 0,583       | 272         | 462         | 530         | 95,1        | 3,89        | 470         | 0,4         | 1055        | 46,6        |
| TMTB00732  | Colluvium      | WGS84 UTM Zone 19S | 433102,8695    | 6768622,66      | 3642,911        | 0,281       | 2,93        | 808         | 1,53        | 109,5       | 313         | 1460        | 185         | 4,3         | 55,9        | 0,78        | 3820        | 63,8        |
| TMTB00735  | Colluvium      | WGS84 UTM Zone 19S | 433159,7635    | 6768518,62      | 3672,352        | 0,181       | 0,537       | 163,5       | 0,215       | 11          | 25,8        | 1020        | 144         | 2,04        | 7,51        | 0,19        | 4910        | 43,3        |

| TORO CENTRAL |                |                    |                |                 |                 |             |             |             |             |             |             |             |             |             |             |             |             |           |
|--------------|----------------|--------------------|----------------|-----------------|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------|
| SAMPLE ID    | type of sample | Coordinate system  | Easting<br>(m) | Northing<br>(m) | Altitude<br>(m) | Au<br>(ppm) | Ag<br>(ppm) | As<br>(ppm) | Bi<br>(ppm) | Cu<br>(ppm) | Pb<br>(ppm) | Zn<br>(ppm) | Li<br>(ppm) | Tl<br>(ppm) | Sb<br>(ppm) | Mo<br>(ppm) | Mn<br>(ppm) | C<br>(pp  |
| MTA00072     | chip           | WGS84 UTM Zone 19S | 432757         | 6770553         | 3339,987        | 0,031       | 1,73        | 38,6        | 0,399       | 2800        | 175,5       | 10500       | 45,7        | 3,21        | 6,43        | 0,59        | 1880        | 5,        |
| MTA00077     | chip           | WGS84 UTM Zone 19S | 432700         | 6770644         | 3300,597        | 0,156       | 24,5        | 402         | 9,1         | 547         | 670         | 17950       | 28,9        | 1,735       | 201         | 11,9        | 25200       | 10        |
| MTA00080     | chip           | WGS84 UTM Zone 19S | 432827,5       | 6770155         | 3359,065        | 0,006       | 1,17        | 34,5        | 0,771       | 216         | 127         | 4980        | 306         | 2,42        | 9,39        | 1,44        | 3920        | 7         |
| MTA00082     | chip           | WGS84 UTM Zone 19S | 432747         | 6770619         | 3338,849        | 0,111       | 34,9        | 143,5       | 8,27        | 619         | 3280        | 17000       | 40,3        | 2,2         | 571         | 6,28        | 12800       | 6         |
| MTA00083     | chip           | WGS84 UTM Zone 19S | 432734,53      | 6770473         | 3327,421        | 0,052       | 10,5        | 78,1        | 5,44        | 23,9        | 727         | 213         | 26,1        | 2,19        | 84,2        | 2,84        | 617         | 4         |
| MTA00087     | chip           | WGS84 UTM Zone 19S | 432775,87      | 6770452         | 3348,38         | 0,032       | 8,65        | 48,2        | 5,49        | 358         | 350         | 4360        | 79,3        | 2,84        | 80,1        | 6,59        | 1100        | 7         |
| MTA00088     | chip           | WGS84 UTM Zone 19S | 432775,87      | 6770451         | 3348,38         | 0,168       | 11,9        | 132         | 11,55       | 1240        | 385         | 16700       | 37,7        | 1,59        | 98,7        | 5,39        | 1475        | 6         |
| MTA00089     | chip           | WGS84 UTM Zone 19S | 432775,87      | 6770450         | 3348,38         | 0,833       | 140         | 1200        | 81,3        | 5830        | 5040        | 209000      | 37,6        | 1,245       | 1250        | 55,3        | 6500        | 9         |
| MTA00092     | chip           | WGS84 UTM Zone 19S | 432815,49      | 6770247         | 3356,84         | 0,044       | 22,3        | 33,1        | 2,56        | 30,1        | 1540        | 663         | 30,6        | 2,57        | 78,8        | 1,22        | 1275        |           |
| MTA00093     | chip           | WGS84 UTM Zone 19S | 432823         | 6770184         | 3356,888        | 0,011       | 5,88        | 29,3        | 0,376       | 46,8        | 446         | 6820        | 158,5       | 2,8         | 27,5        | 2,06        | 6120        |           |
| MTA00095     | chip           | WGS84 UTM Zone 19S | 432824         | 6770127         | 3356,428        | 0,932       | 99,9        | 1615        | 54,8        | 5270        | 2490        | 2590        | 279         | 1,005       | 2060        | 10,4        | 462         | $\square$ |
| MTA00097     | chip           | WGS84 UTM Zone 19S | 432817,98      | 6769988         | 3381,278        | 0,016       | 26,2        | 113,5       | 6,78        | 217         | 524         | 412         | 364         | 2,15        | 189,5       | 0,88        | 812         | 1         |
| MTA00098     | chip           | WGS84 UTM Zone 19S | 432842,7       | 6769918         | 3388,54         | 0,025       | 14,5        | 83,8        | 6,49        | 2710        | 1980        | 26900       | 51,3        | 2,01        | 108,5       | 1,44        | 3150        |           |
| MTA00099     | chip           | WGS84 UTM Zone 19S | 432867,6       | 6769833         | 3381,952        | 0,018       | 13,95       | 193,5       | 26,9        | 2060        | 1390        | 9170        | 51,9        | 1,77        | 230         | 2,11        | 1285        | 1         |
| MTA00102     | chip           | WGS84 UTM Zone 19S | 432861         | 6770333         | 3388,663        | 1,075       | 597         | 1090        | 275         | 3590        | 68000       | 61600       | 5,4         | 0,806       | 3080        | 33          | 1700        |           |
| MTB00130     | chip           | WGS84 UTM Zone 19S | 432723         | 6770134         | 3297,74         | 0,006       | 0,636       | 44,3        | 0,033       | 8,06        | 101         | 4460        | 81,8        | 2,33        | 2,85        | 0,99        | 1405        |           |
| MTB00138     | chip           | WGS84 UTM Zone 19S | 432713,94      | 6770806         | 3310,23         | 0.065       | 1,37        | 186,5       | 0.838       | 651         | 79,9        | 3700        | 86.9        | 2,57        | 7,07        | 0,77        | 13150       |           |
| MTB00141     | chip           | WGS84 UTM Zone 19S | 432768,14      | 6770494         | 3343,98         | 0.034       | 6,83        | 80,8        | 3,79        | 7160        | 230         | 15250       | 30,6        | 1,55        | 52,8        | 1,74        | 12800       |           |
| MTB00144     | chip           | WGS84 UTM Zone 19S | 432832,32      | 6770129         | 3361,24         | 0.027       | 15,75       | 70,5        | 3,01        | 78,5        | 1135        | 1935        | 29,4        | 2,41        | 105,5       | 1,18        | 1130        |           |
| MTB00155     | chip           | WGS84 UTM Zone 19S | 432990,53      | 6769809         | 3427,96         | 0,109       | 5,79        | 70,2        | 1.205       | 113         | 346         | 445         | 135.5       | 2,07        | 22.9        | 0,94        | 613         |           |
| MTB00157     | chip           | WGS84 UTM Zone 19S | 432857,97      | 6770231         | 3389,5          | 0,054       | 2,96        | 188         | 0,592       | 17,95       | 686         | 2780        | 681         | 2,23        | 7,84        | 1,63        | 17900       | $\vdash$  |
| MTB00160     | chip           | WGS84 UTM Zone 19S | 432867,57      | 6770566         | 3393,05         | 0,402       | 90.3        | 379         | 20.2        | 390         | 6530        | 5750        | 65.3        | 1,78        | 234         | 3,58        | 1620        |           |
| MTB00187     | chip           | WGS84 UTM Zone 19S | 432669,84      | 6770809         | 3286,78         | 0,21        | 50,5        | 304         | 35,6        | 143,5       | 2740        | 1995        | 35          | 1,935       | 132         | 15,4        | 716         |           |
| MTB00707     | chip           | WGS84 UTM Zone 19S | 432914.14      | 6770269         | 3436,96         | 0.01        | 2,26        | 26,1        | 2,31        | 42,5        | 172         | 9790        | 89.5        | 3,08        | 11.5        | 3,13        | 7120        |           |
| MTB00746     | chip           | WGS84 UTM Zone 19S | 432852,04      | 6769982         | 3426,74         | 0.035       | 12,35       | 34,1        | 0,501       | 56          | 2580        | 155,5       | 49.1        | 3           | 58          | 0,65        | 767         |           |
| MTB00756     | chip           | WGS84 UTM Zone 19S | 432996,89      | 6770217         | 3509,63         | 0.145       | 484         | 285         | 10,9        | 471         | 2410        | 1340        | 103         | 2,41        | 1170        | 2,27        | 721         |           |
| MTB00757     | chip           | WGS84 UTM Zone 19S | 432821,53      | 6770212         | 3375,55         | 0.016       | 4,52        | 24,1        | 0,222       | 433         | 663         | 4610        | 38,7        | 3,75        | 21,3        | 1,15        | 2070        |           |
| MTB00758     | chip           | WGS84 UTM Zone 19S | 432863,91      | 6770329         | 3404,39         | 2,49        | 369         | 849         | 81          | 1600        | 26600       | 21900       | 76,9        | 1,77        | 1370        | 9,76        | 3390        | 1         |
| MTB00759     | chip           | WGS84 UTM Zone 19S | 432842,3       | 6770134         | 3385,92         | 0.027       | 15          | 169.5       | 3,44        | 93.6        | 3130        | 371         | 30.2        | 2.32        | 94          | 1.6         | 843         |           |
| MTB00134     | Colluvium      | WGS84 UTM Zone 19S | 432776,002     | 6770226         | 3334,53         | 0,067       | 13,6        | 111,5       | 4,19        | 175         | 715         | 3770        | 127,5       | 1,45        | 83          | 1,2         | 3440        |           |
| MTB00135     | Colluvium      |                    | 432655,967     |                 | 3272,181        | 0.063       | 14.15       | 93.6        | 4,36        | 195.5       | 910         | 4410        | 116         | 1,3         | 88,3        | 2,73        | 2980        | Ħ         |
| MTB00136     | Colluvium      |                    | 432656,841     |                 | 3278,413        | 0,073       | 12,4        | 95,9        | 3,54        | 207         | 709         | 4340        | 119         | 1,215       | 69,6        | 2,36        | 3290        |           |
| MTB00137     | Colluvium      |                    | 432680,729     |                 | 3288,126        | 0.068       | 8.82        | 122         | 2,89        | 187.5       | 847         | 3980        | 159,5       | 1,215       | 60.7        | 2,30        | 6120        | Ħ         |
| MTB00143     | Colluvium      |                    | 432801,284     | 6770315         | 3353,424        | 0.071       | 10,4        | 99.1        | 2,98        | 142,5       | 730         | 3610        | 135,5       | 1,275       | 69,6        | 1,21        | 3220        |           |
| MTB00148     | Colluvium      | WGS84 UTM Zone 195 | 432949         | 6769718         | 3369,548        | 0.135       | 11.2        | 243         | 10,45       | 217         | 632         | 1075        | 115,5       | 1,33        | 213         | 2,11        | 1235        | ť         |
| MTB00146     | Colluvium      |                    | 432703,001     | 6770273         | 3292,005        | 0,069       | 11,2        | 86,6        | 2,36        | 122         | 554         | 2700        | 115,5       | 1,155       | 52,9        | 1,42        | 2820        |           |

|           | TORO NORTH        |                    |                |                 |                 |             |             |             |             |             |             |             |             |             |             |             |             |             |
|-----------|-------------------|--------------------|----------------|-----------------|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| SAMPLE ID | type of<br>sample | Coordinate system  | Easting<br>(m) | Northing<br>(m) | Altitude<br>(m) | Au<br>(ppm) | Ag<br>(ppm) | As<br>(ppm) | Bi<br>(ppm) | Cu<br>(ppm) | Pb<br>(ppm) | Zn<br>(ppm) | Li<br>(ppm) | Tl<br>(ppm) | Sb<br>(ppm) | Mo<br>(ppm) | Mn<br>(ppm) | Cs<br>(ppm) |
| TMTA00042 | chip              | WGS84 UTM Zone 19S | 432487         | 6772493         | 3496,32852      | 0,014       | 0,249       | 21,8        | 0,275       | 76,5        | 43,1        | 87          | 61,1        | 0,337       | 0,87        | 12,15       | 1150        | 17,05       |
| TMTA00062 | chip              | WGS84 UTM Zone 19S | 432563         | 6772591         | 3488,45428      | 0,024       | 0,246       | 9,99        | 0,034       | 44,8        | 62          | 169         | 77          | 0,377       | 6,82        | 14,45       | 2020        | 65,1        |
| TMTA00066 | chip              | WGS84 UTM Zone 19S | 432460         | 6772715         | 3595,27103      | 0,205       | 4,75        | 131,5       | 1,04        | 17,65       | 906         | 14          | 180         | 3,03        | 344         | 427         | 75,8        | 58,7        |
| TMTB00384 | chip              | WGS84 UTM Zone 19S | 433615,9       | 6768513,19      | 3521,97         | 0,102       | 0,789       | 61,1        | 0,797       | 30          | 141         | 1280        | 124         | 2,58        | 17,85       | 1,4         | 3270        | 61,4        |



## APPENDIX C: JORC (2012) CODE TABLE 1

The source documents for the "Appendix A: JORC (2012) Code Table 1" are listed in the "References" for the ASX Release.

| Criteria              | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling techniques   | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Outcrop samples: An average of one kilogram samples of Rock<br/>Chips was taken from various locations of well exposed<br/>alteration and mineralization zones by chipping and panel rock<br/>from the main Dacite and Diorite bodies. Grid sampling spacing<br/>was from 50 to 100 meters in the main igneous bodies.</li> <li>Talus samples: 500 - 700 grams of weight were taken for each<br/>talus sample, in the sectors of the grid when no rock outcrop was<br/>observed near the point assigned for sampling, being sieved with<br/>mesh number 10.</li> <li>Float samples: Up to 1.5 kg of rock samples were taken. Samples<br/>were limited to rock blocks in the colluvial zone, which present<br/>little transport and with good mineralization and alteration<br/>observed.</li> <li>The "pannel rock" samples are rock chips taken at points of a<br/>3x3 grid layout to be representative of an outcrop. The points<br/>range from 1 to 1.5m apart, with the grid spacing dependent on<br/>the size of the outcrop.</li> </ul> |
| Drilling techniques   | <ul> <li>Drill type (e.g. core, reverse circulation, open-hole hammer,<br/>rotary air blast, auger, Bangka, sonic, etc) and details (eg core<br/>diameter, triple or standard tube, depth of diamond tails, face-<br/>sampling bit or other type, whether core is oriented and if so, by<br/>what method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Not Applicable for the current ASX Release for the TMT project –<br/>no 'Exploration Results' involving drilling, or their respective<br/>assays, logging, and/or interpretation are included in this ASX<br/>Release for the TMT project.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Drill sample recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Not Applicable for the current ASX Release for the TMT project –<br/>no 'Exploration Results' involving drilling, or their respective<br/>assays, logging, and/or interpretation are included in this ASX<br/>Release for the TMT project.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Logging               | <ul> <li>Whether core and chip samples have been geologically and<br/>geotechnically logged to a level of detail to support appropriate</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>The surface samples had descriptions of lithology, alteration,<br/>mineralisation and other features systematically recorded in the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|             |                                                      | <ul> <li>Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                        | field and encoded into an excel sheet for future reference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RAROX LIMIT | Sub-sampling<br>techniques and<br>sample preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>Rock Chip and talus sampling quality control and quality assurance included the following from the Field Geological Team:         <ul> <li>Certified Reference Materials (Standards) were inserted every ~50 samples: the standards were sourced from OREAS;</li> <li>Field duplicates were inserted every ~30-40 samples;</li> <li>Blanks were inserted every ~50 samples.</li> <li>Talus samples are included in this, because this type of sample is only taken in the sectors where no rock outcrop is observed, within the previously defined sampling grid (Talus assay sample results are pending).</li> </ul> </li> <li>Certified Reference Material (CRM) standards are included in the quality control procedures for the program.</li> <li>Standards, blanks, and internal laboratory checks have been included in the quality control procedures for the program.</li> <li>ALS completed the sample preparation for the rock chip samples presented in the ASX Release with the following sample preparation techniques:         <ul> <li>Crushing of the sample to &gt;70% passing &lt;2mm</li> <li>Riffle split of crushed material if the sample weighs more than 3kg</li> <li>Pulverisation of 1kg of the sample to obtain &gt;85% passing &lt;75microns</li> </ul> </li> </ul> |
| BFLA        | Quality of assay data<br>and laboratory tests        | <ul> <li>The nature, quality and appropriateness of the assaying and<br/>laboratory procedures used and whether the technique is<br/>considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments,<br/>etc, the parameters used in determining the analysis including<br/>instrument make and model, reading times, calibrations factors<br/>applied and their derivation, etc.</li> </ul>                                                                                                                                                                                                                                                                               | <ul> <li>Rock Chips / Talus / Float Samples were sent to ALS Mendoza -<br/>Argentina for ALS to complete:         <ul> <li>4 acid digest MEMS61L super trace exploration analysis<br/>by ICP &amp; AES</li> <li>Overlimit methods were selected for: Ag, Cu, Pb, &amp; Zn.<br/>A number of samples contained after the overlimit<br/>testing &gt;20.00% Pb, the samples are being considered</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|                                             | <ul> <li>Nature of quality control procedures adopted (eg standards,<br/>blanks, duplicates, external laboratory checks) and whether<br/>acceptable levels of accuracy (ie lack of bias) and precision have<br/>been established.</li> </ul>                                                                                                    | <ul> <li>for further testing         <ul> <li>a 30gm charge was used in the fire assay for Au by AAS</li> </ul> </li> <li>Spectral imagery analysis will be completed as a package on the coarse rejects with Terraspec 4 HR scanning and aiSIRIS<sup>™</sup> experispectral interpretation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verification of<br>sampling and<br>assaying | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul> | <ul> <li>Internal data checks have been applied to the data, with<br/>comparison of the highest assay values to the ALS Certificates o<br/>Analysis.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Location of data<br>points                  | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                           | <ul> <li>GPS sample locations were captured by handheld GPS units in the field and later encoded into an Excel spreadsheet that contained the surface samples had descriptions of lithology, alteration, mineralisation and other features.</li> <li>GPS co-ordinates were recorded in Eastings and Northings for WGS 1984, UTM Zone 19s or converted afterwards into WGS 1984, UTM Zone 19s</li> <li>The data discussed in the current ASX Release includes two (2) different multispectral spaceborne datasets for the location of the twelve (12) targets:         <ul> <li>[i] Advanced Spaceborne Thermal Emission and Reflection Radiometer ("ASTER"); and</li> <li>[ii] Sentinel-2.</li> </ul> </li> <li>The data is initially recorded by satellites and the processing and interpretation were delivered in the coordinate system of WGS84 Zone 19S.</li> <li>The survey control is appropriate for interpretation of the processed ASTER and Sentinel-2 to deliver regional targets as surface expressions that are likely to represent surface expressions of high-sulphidation epithermal and/or porphyry-style mineral systems.</li> <li>Follow-up on the ground exploration activities, comprised of surface sampling and Anaconda mapping have used hand held GPS to assist with the physical location of the collected samples.</li> </ul> |

**FLARAROX** 

m



| ion                                  | <ul> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul> | <ul> <li>surface samples aiming to a ~200m apart to cover and i and/or porphyry mineral sy</li> <li>The data discussed in the condifferent multispectral space o [i] Advanced Space Reflection Radiom o [ii] Sentinel-2.</li> <li>The data is initially recorde interpretation were deliver WGS84 Zone 19S.</li> <li>Multispectral image sensor within multiple wavelength electromagnetic spectrum. the band number and the b</li> <li>The ASTER processed datass Near Infrared ("VNIR) or 30 ("SWIR").</li> <li>The Sentinel-2 resolution rabandwidth.</li> <li>The survey control and data interpretation of the procession and/or porphyry-style mine</li> <li>Follow-up on the ground exsurface sampling and Anacog GPS to assist with the physic Surface samples.</li> </ul> |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ion of data in<br>to geological<br>? | <ul> <li>Whether the orientation of sampling achieves unbiased sampling<br/>of possible structures and the extent to which this is known,<br/>considering the deposit type.</li> <li>If the maletionship between the defiling existentiation and the</li> </ul>                                        | <ul> <li>The surface sample location<br/>surface samples aiming to or<br/>~200m apart to cover and i<br/>and/or parabury minoral or</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                      | It the relationship between the drilling orientation and the                                                                                                                                                                                                                                           | and/or norphyry minoral o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

• Data spacing for reporting of Exploration Results.

 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.

- The surface sample locations vary from clusters at outcrops to surface samples aiming to cover a board area, at a spacing ~200m apart to cover and identify high-sulphidation epithermal and/or porphyry mineral systems.
- The data discussed in the current ASX Release deals with two (2) different multispectral spaceborne datasets:
  - [i] Advanced Spaceborne Thermal Emission and Reflection Radiometer ("ASTER"); and
- The data is initially recorded by satellites and the processing and interpretation were delivered in the coordinate system of WGS84 Zone 19S.
- Multispectral image sensors simultaneously capture image data within multiple wavelength ranges (bands) across the electromagnetic spectrum. Each band is commonly described by the band number and the band wavelength centre position.
- The ASTER processed datasets of a resolution of 15m for Visible Near Infrared ("VNIR) or 30m for Short Wavelength Infrared ("SWIR").
- The Sentinel-2 resolution ranges from 10m to 60m dependent on bandwidth.
- The survey control and data resolution is appropriate for interpretation of the processed ASTER and Sentinel-2 to deliver regional targets as surface expressions that are likely to represent surface expressions of high-sulphidation epithermal and/or porphyry-style mineral systems.
- Follow-up on the ground exploration activities, comprised of surface sampling and Anaconda mapping have used hand held GPS to assist with the physical location of the collected samples. Surface samples collected included Outcrop/Rock Chip, Talus, and Float Samples.
- The surface sample locations vary from clusters at outcrops to surface samples aiming to cover a board area, at a spacing ~200m apart to cover and identify high-sulphidation epithermal and/or porphyry mineral systems.
- The data discussed in the current ASX Release deals with two (2) different multispectral spaceborne datasets:
  - [i] Advanced Spaceborne Thermal Emission and Reflection Radiometer ("ASTER"); and

|                   |                                                                                               | <ul> <li>[ii] Sentinel-2.</li> <li>Multispectral image sensors simultaneously capture image data within multiple wavelength ranges (bands) across the electromagnetic spectrum. Each band is commonly described by the band number and the band wavelength centre position.</li> <li>The interpretation of the regional geological structures, based on a number of sources and datasets (e.g. porphyry potential [Ford, et al, (2015) &amp; USGS (2008)], crustal lineaments [Chernicoff, et. al, (2002)], regional gravity, regional magnetics, regional and local geology [SegemAR (2023) &amp; Servicio Nacional de Geologia y Minera (2023)] had been utilised to confirm if the interpretation of alteration and/or mineralisation from the processed ASTER and Sentinel-2 datasets.</li> <li>Geological interpretation is then based on the responses displayed in the imagery against known surface hydrothermal alteration and/or surface geology associated with key mineral deposits. Geological analogues are a useful tool to delineate similar surface expressions of mineralisation.</li> <li>Follow-up on the ground exploration activities, comprised of surface sampling and Anaconda mapping have used hand held GPS to assist with the physical location of the collected samples. Surface samples, these samples are selective for outcrop or spatially distributed across the ground surface for Talus and Float samples to generate a first pass geochemical understanding of the exposed geology.</li> </ul> |
|-------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample security   | The measures taken to ensure sample security.                                                 | <ul> <li>The samples are stored at a remote site, with no access to the<br/>public, the samples are securely transported to the sample<br/>processing laboratory with chain of custody processes in use.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Audits or reviews | <ul> <li>The results of any audits or reviews of sampling techniques and<br/>data.</li> </ul> | <ul> <li>No detailed audits or reviews of the sampling techniques and data have occurred by third parties external to the current team involved in the planning, executing, or advising on the TMT Project work.</li> <li>No audits or reviews have occurred for either the (i) the processed ASTER and Sentinel-2 datasets or the (ii) interpretation of the processed ASTER and Sentinel-2 datasets.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

μ

ARAROX

 $\square$ 



### SECTION 2 REPORTING OF EXPLORATION RESULTS

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                   | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                                                                         | Comm                                                                                                             | entary                                                                                              |                                                                                                                  |                                                                                                        |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Mineral tenement and land<br>tenure status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul> | Arge<br>the F<br>prese<br>"Bela<br>03-Ja<br><u>gate</u><br>6A11                | ented in Belai<br>irarox secure<br>in-2023 <u>https</u><br>way/ASX/asx- | ails of the<br>s No1 Pty<br>rarox Limit<br>s rights to<br>:://cdn-api.<br>research/1<br>s token=8<br>minerals to | Terms She<br>Ltd Argent<br>ed (ASX: B<br>acquire Pr<br><u>markitdig</u><br>L.0/file/29<br>3ff96335c | et for the A<br>tinean miner<br>RX) ASX Rele<br>oject in Arge<br><u>ital.com/api</u><br>24-0261806<br>2d45a094df | cquisition of<br>ral tenures are<br>ease<br>entina" dated<br><u>man-</u><br><u>8-</u><br>502a206a39ff4 |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tenure Name                                                                    | Tenure<br>Identifier                                                    | Tenure<br>Type                                                                                                   | Area (ha)                                                                                           | Grant Date                                                                                                       | Current Tenure<br>Period End<br>Date                                                                   |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TORO                                                                           | 1124-528-<br>M2011                                                      | Discovery<br>claim                                                                                               | 1,685                                                                                               | 2/07/2013                                                                                                        | Not Applicable                                                                                         |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LOLA                                                                           | 1124-181-M-<br>2016                                                     | Discovery<br>claim                                                                                               | 2,367                                                                                               | 29/12/2016                                                                                                       | Not Applicable                                                                                         |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MALAMBO                                                                        | 425-101-2001                                                            | Discovery<br>claim                                                                                               | 3,004                                                                                               | 13/08/2019                                                                                                       | Not Applicable                                                                                         |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MALAMBO 2                                                                      | 1124-485-M-<br>2019                                                     | Discovery<br>claim                                                                                               | 414.6                                                                                               | 24/06/2021                                                                                                       | Not Applicable                                                                                         |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LA SAL 2                                                                       | 414-134-D-<br>2006                                                      | Cateo                                                                                                            | 4,359                                                                                               | 13/05/2020                                                                                                       | 23/11/2023                                                                                             |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MALAMBO 3                                                                      | 1124-074-<br>2022                                                       | Discovery<br>claim                                                                                               | 2,208                                                                                               | Application                                                                                                      | Application                                                                                            |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MALAMBO 4                                                                      | 1124-073-<br>2022                                                       | Discovery<br>claim                                                                                               | 2,105                                                                                               | Application                                                                                                      | Application                                                                                            |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAMBO SUR                                                                      | 1124-188-R-<br>2007                                                     | Discovery<br>claim                                                                                               | 4,451                                                                                               | 11/07/219                                                                                                        | Not Applicable                                                                                         |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAMBO SUR I                                                                    | 1124-421-<br>2020                                                       | Discovery<br>claim                                                                                               | 833                                                                                                 | 9/11/2021                                                                                                        | Not Applicable                                                                                         |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAMBO SUR II                                                                   | 1124-420-<br>2020                                                       | Discovery<br>claim                                                                                               | 833                                                                                                 | 13/12/2021                                                                                                       | Not Applicable                                                                                         |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAMBO SUR III                                                                  | 1124-422-<br>2020                                                       | Discovery<br>claim                                                                                               | 833                                                                                                 | Application                                                                                                      | Application                                                                                            |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAMBO SUR IV                                                                   | 1124-299-<br>2021                                                       | Discovery<br>claim                                                                                               | 584                                                                                                 | 3/12/2021                                                                                                        | Not Applicable                                                                                         |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAMBO SUR V                                                                    | 1124-577-<br>2021                                                       | Cateo                                                                                                            | 7,500                                                                                               | Application                                                                                                      | Application                                                                                            |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAMBO SUR VI                                                                   | 1124-579-<br>2021                                                       | Cateo                                                                                                            | 5,457                                                                                               | Application                                                                                                      | Application                                                                                            |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Note 1: For a Disc<br>the minimum inv<br>Note 2: All miner<br>Note 3: A tenure | estment plan is f<br>al tenures are he                                  | ollowed.<br>Id by GWK S.                                                                                         | A.                                                                                                  | nineral tenure                                                                                                   | is retained while                                                                                      |

| $\left( \right)$ |                 |   |
|------------------|-----------------|---|
| l                |                 | Ŵ |
|                  |                 |   |
|                  | $\bigcirc$      |   |
|                  |                 |   |
|                  |                 |   |
|                  |                 |   |
|                  | $\geq$          |   |
|                  |                 |   |
|                  |                 |   |
|                  | $\checkmark$    |   |
|                  |                 |   |
|                  |                 |   |
|                  |                 |   |
|                  | $\triangleleft$ |   |
|                  | $\gamma$        |   |
|                  | $\triangleleft$ |   |
|                  |                 |   |
|                  |                 |   |
|                  | $\cap$          |   |
|                  |                 |   |

| Criteria                             | JORC Code explanation                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exploration done by other<br>parties | <ul> <li>Acknowledgment and appraisal of exploration by other parties.</li> </ul> | <ul> <li>Historical exploration activities for the Toro (1124-528-M-11) tenure have been covered in the Belararox Limited (ASX:BRX) ASX Release dated 23<sup>rd</sup> Mar 2023 and titled 'Binding Agreement executed to acquire TMT Project in Argentina Significant Zinc Mineralisation (266m @ 0.76% Zn) reported in historical drilling.". Note: the aforementioned ASX Release contains a 'Cautionary Statement' and the 'Exploration Results' are yet to be reported to the JORC (2012) Code.</li> <li>The interpretation of the regional geological structures, based on a number of sources and datasets (e.g. porphyry potential [Ford, et al, (2015) &amp; USGS (2008)], crustal lineaments [Chernicoff, et. al, (2002)], regional gravity, regional magnetics, regional and local geology [SegemAR (2023) &amp; Servicio Nacional de Geologia y Minera (2023)] had been utilised to confirm if the interpretation of alteration and/or mineralisation from the processed ASTER and Sentinel-2 datasets.</li> <li>Fathom Geophysics (Core &amp; Core, 2023) processed the ASTER and Sentinel-2 data for use in the Garwin (2023) study, and the processed data is included in images within this ASX Release.</li> </ul> |
| Geology                              | <ul> <li>Deposit type, geological setting and style of mineralisation.</li> </ul> | <ul> <li>Regional Geology: The TMT project is within or in proximity to a number of the significant regional metallogenic belts of South America, (1) the Andean Metallogenic Belt, (2) the El Indio Metallogenic (Cu-Au) Belt, and (3) the Maricunga Metallogenic (Cu-Au) Belt.</li> <li>Toro (1124-528-M-11) tenure and Specific Geology (from historical reports): The identified rocks include the Valle del Cura Formation (Eocene), composed mainly by red conglomerates, sandstones, tuffs, andesites and pyroclastic ignimbrites. Some of these rocks outcrop on the surface, with tuffaceous breccias being intersected in historical drill holes. The sequence is intruded by subvolcanic bodies pseudo concordant to stratification, "Intrusivos Miocenos", the source of the hydrothermal alteration-mineralization in the area. Rhyodacitic - dacitic rocks, altered by advanced argillic and phyllic alteration are present in the Toro project tenure. Stockworks and at least one (1) Breccia Pipe have been identified during historical exploration activities at the Toro project.</li> <li>The 'Targets' interpreted from the Satellite Imagery: 12</li> </ul>                                                 |

| Criteria | JORC Code explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                       | <ul> <li>prospective targets are considered to represent surface expressions of high-sulphidation epithermal and/or porphyry-style mineral systems based on the interpretation of processed ASTER and Sentinel-2 datasets and comparison to regional Geological Analogue deposits with comparable surface mineralisation (South to North): <ul> <li>Toro North;</li> <li>Toro Central;</li> <li>Toro Contral;</li> <li>Toro South;</li> <li>Tambo VI;</li> <li>Lola;</li> <li>Malambo;</li> <li>Malambo 4;</li> <li>Tambo South;</li> <li>Tambo South;</li> <li>Tambo North 2.</li> </ul> </li> <li>The interpretation of the regional geological structures, based or a number of sources and datasets (e.g. porphyry potential [Ford et al. (2015) &amp; USGS (2008)], crustal lineaments [Chernicoff, et. al. (2002)], regional gravity, regional magnetics, regional and local geology [SegemAR (2023) &amp; Servicio Nacional de Geologia Minera (2023)] had been utilised to confirm if the interpretation of alteration and/or mineralisation from the processed ASTER and Sentinel-2 datasets.</li> <li>Geological interpretation is then based on the responses displayed in the imagery against known surface hydrothermal alteration and/or surface geology associated with key mineral deposits. Geological analogues are a useful tool to delineate similar surface expressions of mineralisation.</li> <li>Follow-up on the ground exploration activities will be required t confirm the remote sensing interpretation of fue geology.</li> <li><i>Filo del Sol deposit - Geological Analogue</i> (Ausenco Engineering Canada Inc, 2023) (Filo Mining Corp., 2020):</li> <li>The Filo del Sol deposit has an estimated Total Mineral Resource of 644Mt @ an average grade of 0.31% (u. 0.32g/t Au, &amp; 10.1 g/t Ag with cut-off grade</li> </ul> |

| Criteria                           | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria<br>Drill hole Information | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</li> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea</li> </ul>                                                                                             | <ul> <li>(Ausenco Engineering Canada Inc, 2023). The Filo del Sol deposis associated with oxide &amp; sulphide ores that are strongly associated with siliceous alteration (mapped silica and residua quartz), surrounded by quartz-alunite alteration.</li> <li>The Filo del Sol Cu-Au-Ag deposit has been used as a geologica analogue since it shows a similar response to the siliceous alteration (silica and residual quartz) and similar regional structural features, with N-S major lineament crosscut by a NV SE structure.</li> <li>Valadero - Geological Analogue (Holley, 2012)</li> <li>The Veladero deposit displayed clear links between the ASTER thermal image and the surface-mapped silica / residual quartz alteration with the final pit predominantly targeting the surface ASTER interpreted Jarosite &amp; Pyrophyllite.</li> <li>The Veladero surface alteration and mineralisation mapping presented against the final pit design by Holley (2012) includes silicification, quartz-kaolinite-sulphur, quartz-alunite, quartz-illite, chlorite-epidote, &amp; chlorite-epidote.</li> <li>Not Applicable for the current ASX Release for the TMT project no 'Exploration Results' involving surface samples, drilling, or their respective assays are included in this ASX Release for the TMT project.</li> </ul> |
|                                    | <ul> <li>level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Data aggregation methods           | <ul> <li>why this is the case.</li> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade</li> </ul>                                  | <ul> <li>Not Applicable for the current ASX Release for the TMT project<br/>no 'Exploration Results' involving surface samples, drilling, or<br/>their respective assays are included in this ASX Release for the<br/>TMT project.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

ARAROX LIMIT

| Criteria                                       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relationship between                           | <ul> <li>results, the procedure used for such aggregation should<br/>be stated and some typical examples of such<br/>aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal<br/>equivalent values should be clearly stated.</li> <li>These relationships are particularly important in the</li> </ul>             | <ul> <li>Interpretation of the regional geological structures, based on a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| mineralisation widths and<br>intercept lengths | <ul> <li>reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul> | <ul> <li>number of sources and datasets (e.g. porphyry potential [Ford, et al, (2015) &amp; USGS (2008)], crustal lineaments [Chernicoff, et. al, (2002)], regional gravity, regional magnetics, regional and local geology [SegemAR (2023) &amp; Servicio Nacional de Geologia y Minera (2023)] had been utilised to confirm if the interpretation of alteration and/or mineralisation from the processed ASTER and Sentinel-2 datasets.</li> <li>Geological interpretation is then based on the responses displayed in the imagery against known surface hydrothermal alteration and/or surface geology associated with key mineral deposits. Geological analogues are a useful tool to delineate similar surface expressions of mineralisation.</li> <li>Follow-up on the ground exploration activities is required to confirm the remote sensing interpretation of the geology and in particular confirm the dimensions of any surface expression of alteration and/or mineralisation.</li> <li>Field mapping has been completed on the Toro South and Toro North Targets, the field mapping is substantially complete for the Toro Central Target.</li> <li>All statistical information presented in this ASX Release is inclusive of Field Duplicates and assayed samples that have been allocated ½ of the lower detection limit, for any elements reported as below the detection limit.</li> </ul> |
| Diagrams                                       | <ul> <li>Appropriate maps and sections (with scales) and<br/>tabulations of intercepts should be included for any<br/>significant discovery being reported These should<br/>include, but not be limited to a plan view of drill hole<br/>collar locations and appropriate sectional views.</li> </ul>                                                       | <ul> <li>Appropriate maps and sections are displayed in the body of the<br/>ASX Release.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Balanced reporting                             | <ul> <li>Where comprehensive reporting of all Exploration<br/>Results is not practicable, representative reporting of<br/>both low and high grades and/or widths should be<br/>practiced to avoid misleading reporting of Exploration<br/>Results.</li> </ul>                                                                                               | <ul> <li>Follow-up on the ground exploration activities is required to confirm the remote sensing interpretation of the geology and in particular confirm the dimensions of any surface expression of alteration and/or mineralisation.</li> <li>Field work is progressing across the targets, in order to follow up</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| $\bigcap$               |  |
|-------------------------|--|
|                         |  |
|                         |  |
|                         |  |
| $\overline{\mathbf{X}}$ |  |
| 2                       |  |
|                         |  |
|                         |  |
| $\checkmark$            |  |
|                         |  |
| $\bigcirc$              |  |
| N                       |  |
|                         |  |
|                         |  |
| <u>()</u>               |  |
| $\triangleleft$         |  |
|                         |  |
|                         |  |
| $\cap$                  |  |
|                         |  |

| Criteria                           | JORC Code explanation                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Other substantive exploration data | <ul> <li>Other exploration data, if meaningful and material,<br/>should be reported including (but not limited to):<br/>geological observations; geophysical survey results;<br/>geochemical survey results; bulk samples – size and</li> </ul>                                                                                                                     | <ul> <li>the remote sensing work.</li> <li>'Other substantive exploration data' is summarised in the<br/>Belararox Limited (ASX:BRX) ASX Releases dated:         <ul> <li>23<sup>rd</sup> May 2023: Amended Announcement – Porphyry<br/>Prospectivity Confirmed with additional TMT targets</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                    | method of treatment; metallurgical test results; bulk<br>density, groundwater, geotechnical and rock<br>characteristics; potential deleterious or contaminating<br>substances.                                                                                                                                                                                      | <ul> <li>identified;</li> <li>17<sup>th</sup> July 2023: TMT project in Argentina Significant Zinc<br/>Mineralisation (266m @ 0.76% Zn) verified and reported<br/>under the JORC (2012) Code;</li> <li>30<sup>th</sup> Oct 2023: TMT Project – Field Work Commenced and<br/>Additional High Sulphide Epithermal &amp; Porphyry Targets<br/>Characterised;</li> <li>12<sup>th</sup> Dec 2023: TMT Project – Field Work Update; and</li> <li>22<sup>nd</sup> Jan 2024: TMT Project Operational Update: Geological<br/>Mapping Supports the Porphyry Potential at Toro</li> <li>21<sup>st</sup> Feb 2024: TMT Project - Toro Surface Sample Assay<br/>Results and Geology Strengthen the Interpretation of a<br/>Porphyry Mineralisation / Epithermal Mineralisation</li> </ul> |
| Further work                       | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul> | <ul> <li>'Further Work' is covered in the section titled 'Next Steps' in the<br/>body of the ASX Release.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |